001     910962
005     20230308201754.0
024 7 _ |a 10.1039/D2CP04089A
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a 2128/33441
|2 Handle
024 7 _ |a 36331005
|2 pmid
024 7 _ |a WOS:000879499200001
|2 WOS
037 _ _ |a FZJ-2022-04290
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Mohanakumar, Shilpa
|0 P:(DE-Juel1)179461
|b 0
245 _ _ |a Overlapping hydration shells in salt solutions causing non-monotonic Soret coefficients with varying concentration
260 _ _ |a Cambridge
|c 2022
|b RSC Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673347117_24179
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigate the thermodiffusive properties of aqueous solutions of sodium iodide, potassium iodide and lithium iodide, using thermal diffusion forced Rayleigh scattering in a concentration range of 0.5–4 mol kg^(-1) of solvent, large enough to deal with associated salts, and a temperature range of 15 to 45 °C. All systems exhibit non-monotonic variations of the Soret coefficient S_T with concentration, with a minimum at one mol kg^(-1) of solvent in all three cases. We take this as an indication that the relevant length and energy scales are very similar in all cases. On this basis we develop an intuitive picture in which the relevant objects are the fully hydrated salt molecules, including all water molecules that behave differently from bulk water. Preliminary, somewhat sketchy calculations indicate that indeed Soret coefficients begin to rise beyond concentrations where the fully hydrated particles are randomly close packed. Indications are given as to why the model will fail at large concentrations.
536 _ _ |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524)
|0 G:(DE-HGF)POF4-5241
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kriegs, Hartmut
|0 P:(DE-Juel1)130773
|b 1
700 1 _ |a Briels, Willem
|0 P:(DE-Juel1)159317
|b 2
|u fzj
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 3
|e Corresponding author
773 _ _ |a 10.1039/D2CP04089A
|g p. 10.1039.D2CP04089A
|0 PERI:(DE-600)1476244-4
|n 44
|p 27380-27387
|t Physical chemistry, chemical physics
|v 24
|y 2022
|x 1463-9076
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/910962/files/Supplementary%20material.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/910962/files/d2cp04089a.pdf
909 C O |o oai:juser.fz-juelich.de:910962
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
|q OpenAPC
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130773
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159317
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5241
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a TIB: Royal Society of Chemistry 2021
|2 APC
|0 PC:(DE-HGF)0110
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21