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Ion transport and limited currents 
in supporting electrolytes and ionic 
liquids
Maximilian Schalenbach*, Yasin Emre Durmus, Hermann Tempel, Hans Kungl & 
Rüdiger‑A. Eichel

Supporting electrolytes contain inert dissolved salts to increase the conductivity, to change 
microenvironments near the electrodes and to assist in electrochemical reactions. This combined 
experimental and computational study examines the impact of supporting salts on the ion transport 
and related limited currents in electrochemical cells. A physical model that describes the multi-ion 
transport in liquid electrolytes and the resulting concentration gradients is presented. This model 
and its parameterization are evaluated by the measured limited current of the copper deposition in 
a CuSO4 electrolyte under a gradually increasing amount of Na2SO4 that acts as a supporting salt. 
A computational sensibility analysis of the transport model reveals that the shared conductance 
between the ions lowers the limited currents with larger supporting salt concentrations. When 
the supporting salt supplies most of the conductance, the electric-field-driven transport of the 
electrochemically active ions becomes negligible so that the limited current drops to the diffusion-
limited current that is described by Fick’s first law. The transition from diluted supporting electrolyte 
to the case of ionic liquids is elucidated with the transport model, highlighting the different physical 
transport mechanisms in a non-conducting (polar) and a conducting (ionic) solvent.

Supporting electrolytes are solvent-based liquids that contain inert salt additives (defined as supporting salts) 
which are not electrochemically converted. These additive salts can increase the conductivity of the electrolyte 
and thereby improve the efficiency of electrochemical processes1–3. For example, in industrial copper refining 
and winning the conductivity of aqueous CuSO4 baths is increased by H2SO4 addition4,5. Electrolytes with at 
least three different sorts of ions also emerge when reactive ion types are dissolved with inert ions in for instance 
aqueous salt solutions6–8, molten salts9–11, deep eutectic solvents12,13, or ionic liquids14–17.

For binary (one type of cation and one type of anion) solvent-based electrolytes the transport of ions was 
experimentally characterized and theoretically described in various works18–20. In these systems, the electro-
lyte is thinning out at the electrode at which dissolved ions are electrochemically converted, whereas the ions 
accumulate at the electrode which introduces ions into the electrolyte. Thus, electrochemical reactions cause 
concentration gradients in liquid electrolytes21–23 that ultimately limit the current that electric-field and diffusion-
driven ion transport can carry without locally depleting the concentration of the converted ion types24. The 
limited currents and concentration gradients in multi-ion systems with its relation to the microenvironment at 
the electrode (such as pH25,26) display an important design aspect for electrochemical devices for batteries21–23, 
the separation of ions27,28, CO2 reduction29,30, electrowinning31,32, electroplating33–35 and so forth.

In binary electrolytic solutions, the electrolyte parameterization is described by the transfer numbers (that 
describe the different contributions of the anions and cations to the conduction), the mutual diffusion coefficient 
(pairwise diffusion of anions and cations under the boundary condition of electro-neutrality in the solution) and 
the molar conductivity. These properties depend on the concentration, for which the electrochemically driven 
concentration gradients require a spatially resolved parameterization for a precise transport modeling24. Numeri-
cal time domain modeling of the electrochemical transport differential equations has proven its reliability to 
represent the concentration dependence of the electrolyte parameterization, while it also can resolve changing 
boundary conditions such as varying currents24.

The ion transport in supporting electrolytes was modeled in previous studies with analytical36–38 and 
numerical39–41 approaches to solve the electrochemical transport equations. From these studies, only Awakura 
et al.37 compared model results with experimental data, which is however crucial to understand and describe the 
complexity of the ion–ion interactions in these systems that cannot be precisely described by ab-initio models. 
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All of these studies were conducted with a constant set of electrolyte parameters that do not take into account 
the concentration dependence and ion–ion interactions. Most of these studies considered an infinite distance of 
anode and cathode37–39,41, which simplifies the mathematical description and analytical solution of the transport 
equations. This scenario however does not lead to a steady state with a constant limited current24. A detailed 
understanding of the mechanisms that influence limited current in supported electrolytes, its correlation to the 
electrolyte properties and the parameterization of the interaction of different sort of ions is not yet reported.

The aim of this study is to describe the ion transport in supporting electrolytes with a physical model of the 
electrochemical transport equations which enables a concentration-dependent parameterization and the descrip-
tion of steady limited currents. The modeled limited currents are compared under different parameterization 
scenarios to measured limited currents of mixed CuSO4 and Na2SO4 electrolytes. To understand the physico-
chemical mechanisms of the ion transport in supported electrolytes and its influence on the limited current in 
detail, a computationally sensibility analysis of the parameterization is conducted. Moreover, the computer model 
is adjusted to multi-ion systems in molten salts and ionic liquids, showing similarities and differences of the 
ion transport in comparison to the solvent-based electrolytes. The source codes of the computational model are 
provided in the supporting information, so that the community effortlessly can reproduce the presented results 
and thereon further develop the presented model.

Methods
Experimental.  In this study, the copper deposition and dissolution of plane and polished copper electrodes 
in mixed CuSO4 and Na2SO4 electrolytes serve as an exemplary system of supporting electrolytes to examine 
limited currents. Hereto, the two polished copper plates are separated by a stamped fluoroelastomer flat sealing 
with an inner diameter of 14 mm and a thickness of 500 µm (Reichelt Chemietechnik). To assemble the cell, the 
sealing was laid on one electrode and the copper surface was wetted with approximately 1 ml of electrolyte. The 
surface of the other electrode was also wetted with the electrolyte and then pressed onto the electrode with the 
sealing. Thereby, the excess electrolyte floated out of the cell assembly while the sealing between the electrodes 
was completely filled with the electrolyte. The anode was placed at the bottom to avoid macroscopic density dif-
ferences that are compensated by gravitational shear forces24. An additional cell with copper electrodes and an 
electrode distance of 20 mm was used to characterize the conductivity of Na2SO4 solutions. Hereto, the copper 
electrodes were pressed with flat sealings (same type as above) on a polypropylene body. With 4-wire potentio-
dynamic alternating current impedance measurements, the electrolyte resistance was determined42.

Model.  A detailed model on the ion transport in binary electrolytes has been presented previously24, which 
included an experimental evaluation and a concentration-dependent parameterization of the molar conductiv-
ity, mutual diffusion coefficient and ion transfer numbers. This transport model describes the electric field and 
diffusion driven motion of dissolved ions in liquid electrolytes and is in the following adapted to an electrolyte 
with three ion types. This multi-ion system is in the following parameterized on the basis of reported experimen-
tal conductivities, diffusion coefficients and transfer numbers on the binary electrolyte systems of CuSO4 and 
Na2SO4, respectively. The source codes of this approach are supplied in the supporting information.

Figure 1 summarizes the data on molar conductivity, diffusion coefficient and cation transfer number of 
aqueous CuSO4 and Na2SO4 electrolyte solutions, respectively, referring to the data reported by Owen et al.43, 
Bester-Roag et al.44, Emanuel et al.45, Noulty et al.46, Woolf et al.47, Rard et al.48, Pikal et al.49 and Longsworth 
et al.50. The molar conductivity and diffusion coefficients decrease towards higher electrolyte concentrations, 
which is a direct result of the ion–ion interaction that is described by the Debye-Hückel theory51,52. Most of the 
literature reported values at the standard temperature of 25 °C, whereas the measurements in this study were 
performed at 20 °C. The effect of temperature on the molar conductivity and diffusion coefficient is discussed 
elsewhere in detail24. The conductivity and the transfer coefficient of the CuSO4 electrolyte show a more distinct 
concentration dependence than those of the Na2SO4 electrolyte. The dissolution of CuSO4 acidifies the aqueous 
solvent, however, the concentration of protons is more than 1000 smaller than the concentration of dissolved 
copper for which the impact on protons on the transport model is negligible24. The trends of the concentration 
dependence of the electrolyte properties can be described on the basis of the Debye–Hückel theory, whereas the 
complexity of the aqueous solutions do not allow a precise theoretical prediction of ion–ion interactions and their 
impact on conductivities and diffusion coefficients53,54. Thus, the experimental data is described by analytical 
non-physical equations which adequately describe the concentration dependence of the literature data in Fig. 1 
as discussed in the supporting information in detail.

The transfer number ti of the ion type i is defined by the current Ii that it carries in relation to the total cur-
rent Itot:

Using Ohm’s law, this equation can also be interpreted as a ratio of conductivities κ:

To apply this definition to multi-ion systems, a more precise notation is introduced in the following. In 
Na2SO4, the anion ( SO2−

4  ) has a valence of two whereas the cation ( Na+ ) has a valence of one. By using the lowest 
common denominator of the valences, equal charges and equal concentrations of the definitions of C = 2Na+ 
and A = SO

2−
4  result. The molar conductivity � of an binary electrolyte that is comprised by type A and C is here 
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defined as �AC (units of S cm2 mol
−1 ). As shown in Fig. 1, the transfer number and the molar conductivity have 

an intrinsic concentration dependence for which both are a function of the concentration cAC . The conductivity 
of the binary electrolyte κAC equals the product of concentration and molar conductivity:

With the molar conductivity and the ion transport number, the conductivity κA of the anion A as a function 
of the concentration can be calculated as

In the considered multi-ion system of CuSO4 with Na2SO4 addition, the conductivity of the sodium and cop-
per ions are determined similarly to the binary solutions

where �̂ includes the influence by the interactions between the different ion types on the molar conductivity. 
In the case of the sulfate anion, the situation becomes more complex, as it is involved in the conduction of both 
salts. Its conductivity is here calculated as the sum of its contributions to the conductivity of both dissolved salts:

In the results part, different approaches to estimate the influence of the ion interactions on the molar con-
ductivity are presented, which are based on the data in Fig. 1. The total conductivity κtot in the multi-ion system 
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Figure 1.   Parameterization of CuSO4 (left) and Na2SO4 (right) binary electrolytes as a function of the 
concentration. (A) Molar conductivity. (B) Diffusion coefficient. (C) Transfer number.
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equals the sum of the conductivities of the individual types of ions. Accordingly, the conductivity ratio (Eq. (2)) 
can be determined for multi-ion systems, which expressed the share of the different ion types to the overall 
current.

The diffusion process of type A and C is always pairwise, as otherwise the electroneutrality is violated. Thus, 
the mutual diffusion coefficients D are used to calculate those of the cations:

For the sulfate ions, the weighted arithmetic mean is used to calculate the diffusion coefficient, as their dif-
fusion also depends on the mobility of the cations to which they are paired:

The differential equations of the transport model are discussed in the supporting information in detail, includ-
ing their boundary conditions at the electrodes and their implementation in the numerical simulation framework.

Results and discussion
First, the experimental and model data on the ionic transport of mixed CuSO4 and Na2SO4 electrolytes is pre-
sented. Second, the influence of the electrolyte parameters on limited currents is examined using the transport 
model. Moreover, the computer model is used to describe the transition from diluted polar solvents to ionic 
liquids, highlighting similarities and differences of both systems.

Measured and modeled data on the CuSO4–Na2SO4 electrolytes.  Figure 2 shows the measured 
current densities of a 0.1 M CuSO4 solution with a variation of Na2SO4 addition from 0 to 1 M as a function 
of time. A voltage of 0.3 V was applied between the electrodes that were 500 µm apart from each other (see 
“Experimental” section). After initial double layer charging and surface reduction/oxidation the current can be 
mainly attributed to the copper deposition and dissolution. This electrochemical current decays over time as the 
cathodic copper ion concentration depletes (detailed discussion below). After approximately 200 s a steady cur-
rent is reached for all different concentrations.

To calculate the limited currents with the computational transport model, the simulation is started with a 
current density of 15 mA/cm2, resembling the experimental approach by beginning with a larger value than the 
expected limited current density. When the concentration of copper ions at the cathode depletes to 1/15 of the 
initial concentration of 0.1 M, the current is decreased. After this initial reduction, the current is continuously 
adjusted so that the cathodic copper ion concentration is ranging between 1/15 and 1/12 of the initial concentra-
tion. Figure 3 shows an example of the modeled concentration gradients between the electrodes for a total CuSO4 
concentration of 0.1 M and a Na2SO4 concentration of 0.2 M. In the initial state, the concentration of the ions is 
evenly distributed in the electrolytic solution. In the final state, a steady limited current is reached, in which the 
concentration gradients do not change as a function of time and in which the copper ion concentration at the 
cathode is depleted. The total concentrations of the ions in the electrolyte do not change, as the inert ions are not 
converted at the electrodes and as the same amount of copper is deposited and dissolved. Moreover, the sum of 
the charges of the cations and anions is locally and globally zero, fulfilling the electroneutrality of the electrolyte 
(see detailed discussion in reference24).

In contrast to the copper ion starvation at the cathode and its accumulation at the anode, the sodium ion con-
centration gradient is converse, with an enlarged amount at the cathode and a reduced amount at the anode. The 
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Figure 2.   Measured current densities at 0.3 V between two copper electrodes (distance of 500 µm) with a 
CuSO4 concentration of 0.1 M and a variation of the Na2SO4 concentration from 0 to 1 M.
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sodium ions are transported by the electric field in the electrolyte to the cathode where they cannot be converted. 
In the steady state, the sodium ion current by the electric field towards the cathode is balanced by diffusion into 
the opposite transition, leading to no net sodium ion transport. As the sulfate ions are transported by the electric 
field towards the anode, the amount of sulfate ions is decreased at the cathode and increased at the anode. As 
the sulfate ions are the only anions in this system, their amount reflects the total amount of dissolved ions with 
respect to the charge. Similar to the sodium ions, in the steady state the net sulfate ion transport equals zero so 
that the copper ions as the only electrochemical active ion type constitute the total net current. The electric-field 
and diffusion-driven ion transport of the copper ions point in the same direction from the anode to the cathode.

From the measurements graphed in Fig. 2, the limited current was determined by the mean current between 
300 and 400 s after the experiments started. In addition to the data graphed in Fig. 2, two repetition measure-
ments were conducted. Figure 4 shows the mean of these measurements with the standard variation as the sta-
tistic error of the experiments. Moreover, Fig. 4 shows the modeled data, which is considered for four different 
approaches of the parameterization, which all show similar trends as the experiment with decreasing limited 
currents towards higher Na2SO4 concentrations. The four different parameterizations are characterized by the 
following features:

	 (i)	 The first case is modeled with a constant parameterization, resembling previously reported models 
in the literature36–41. The values of Fig. 1 at 0.1 M concentration of CuSO4 and Na2SO4 serve as model 
input parameters. When the concentration of copper ions near the cathode is thinning out, their local 
conductivity, diffusion coefficient and transfer number increase with reference to Fig. 1 which increases 
the limited current in pure CuSO4 electrolytes24. By neglecting these concentration dependencies, the 
current is up to a Na2SO4 concentration of 0.5 M underestimated (similar to that in binary solutions24), 
as the locally higher diffusivity and ion transport number (see Fig. 1) of the copper ions at the depleting 
cathodic concentration is not taken into account. At higher Na2SO4 concentrations, the decrease of the 
conductivity, diffusion coefficients and cation transfer number becomes significant so that the model 
with the constant parameterization overestimates the limited current.

	 (ii)	 In the second case, the model is parameterized with the individual concentration dependencies of CuSO4 
and Na2SO4 respectively, without taking their interaction into account. Thus, the molar conductivity, 
diffusivity and cation transport number of the CuSO4 component decreases towards higher CuSO4 
concentrations, whereas it is not affected by the Na2SO4 concentration. Likewise, the properties of the 
Na2SO4 component are influenced by its concentration and do not interact with the CuSO4 component. 
The modeled data is overestimating the measured limited current. At Na2SO4 concentrations below 
0.05 M the differences between the modeled and measured data is with less than 5% moderate, however, 
it increases towards higher concentrations. As expected from the Debye–Hückel theory, the interaction 
of the ions is expected to decrease the molar conductivity and diffusion coefficients, explaining the mod-
eled overestimation of the limited currents.

	 (iii)	 In the third parametrization scenario, the parameters of the CuSO4 and Na2SO4 components are calcu-
lated as a function of the total concentration of sulfate ions, assuming that the interaction between the 
sulfate ions and the different cations is equal. However, this parametrization underestimates the measured 
limited current. Thus, the assumption that the ions influence one another in the same amount does not 
hold valid. Figure 1 showed a more pronounced concentration dependence of molar conductivity, dif-
fusion coefficient and transfer number of CuSO4 than those of Na2SO4. Thus, the ion–ion interactions in 
CuSO4 are different from that in Na2SO4 and the influence of the different components on one another 
is therefore also not that easy to describe.

Figure 3.   Modeled concentration gradients (using the parameterization case iv as defined in the text below) 
at the limited current for an electrode distance of 500 µm, a CuSO4 concentration of 0.1 M, and a Na2SO4 
concentration of 0.2 M. The cathode is located at the left side (distance = 0) and the anode at the right side 
(distance = 500 µm).
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	 (iv)	 The fourth case describes a concentration-dependent parameterization that displays a mixture between 
the second and third approach. Hereto, the parameters for the CuSO4 component are calculated for 
the concentration of CuSO4 plus 20% of the concentration of Na2SO4. Analogously, the parameters for 
the Na2SO4 component are calculated for the concentration of Na2SO4 plus 20% of the concentration 
of CuSO4. Thus, an interaction between the different ion types is partly included, however, to a smaller 
extent than that between the ions of the same type. Using this parameterization, a good fit of modeled 
and measured data is obtained.

The scenarios discussed above are based on the experimental data on binary electrolytes and do not represent 
a physicochemical approach to characterize the ion–ion interactions in mixed ion systems. Based on these data, 
however, the ion–ion interaction is shown to crucially impact the ion transport in supporting electrolytes and 
the related limited currents. In the literature53, the Debye–Hückel theory based physicochemical models that are 
used to describe the complex interaction between the ions are non-trivial and typically do not exactly describe 
the concentration dependence of the electrolyte parameters. However, using such approaches a physicochemical 
description of the ion–ion interactions for the electrolyte parameterization may be possible. Theoretical works 
to address the prediction of the ion–ion interaction in multi-ion systems have to follow and may lead to more 
precise parameterization procedures as the presented approaches that is based on the experimental data of binary 
electrolytic solutions.

Computational sensibility analysis.  Thus far, measured and modeled data showed that limited currents 
decrease towards higher concentrations of the inert ions. In the following, the modeled limited currents are 
modeled under a variation of the electrolyte parameters, aiming to display the physicochemical relations that are 
described by the differential equations of the transport model. Hereto, two cases are considered, a polar solvent 
in which the salts are dissolved and an ionic liquid (or ionic melt). The first case resembles the above discussed 
CuSO4–Na2SO4 system, where water displayed the polar solvent.

A simplified test system is considered in the following, in order to focus on the physicochemical interactions 
of the transport mechanisms rather than the complex parameterization that is discussed above. The test system is 
characterized by the following properties: (1) The electrolyte is comprised by two different salts, with two differ-
ent types of cations (denoted as C1 and C2) and one type of anion (denoted as A). (2) Cation type C1 is pushed 

Figure 4.   Measured (black lines with scatter and error bars) and modeled (colored lines) limited 
currents densities for a CuSO4 concentration of 0.1 M under a variation of the Na2SO4 concentration. The four 
different parameterization scenarios for the model are discussed in the text. The measured data is recorded with 
a voltage of 0.3 V between the electrodes. (A) Linear increment of the x-axis. (B) Square root spacing of the 
x-axis to more clearly resolve the limited current densities at small concentrations.
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at the anode into the electrolyte and it is removed at the cathode, the other ions are inert. (3) Both salts have an 
equal density. (4) The molar conductivity, diffusion coefficient and transfer number of both salts are assumed 
as concentration independent with constant values of � = 100 S cm2mol

−1 , D = 10−5 cm2s−1 , t+ = 0.5 and 
initial concentrations of c = 0.1 M . One of these parameters of the supporting salt (that is constituted of C2 and 
A) are varied, while the other remain constant.

Figure 3 showed, that the net concentration of all ions at the cathode in the system decreases near the cath-
ode. However, in the case of ionic liquids or salt melts, the depletion of the ions at an electrode means that the 
entire electrolyte vanishes whereas it concentrates at another electrode. For the test system with the ionic liquid 
an encapsulated volume is considered (such as in a battery). As both salts in the test system have the same type 
of anions and the same density, only the positions of the cations can change whereas the concentration of the 
anions is constant over the entire electrolyte. Hence, the differential equations that describe the anion transport 
are neglected and deleted from the source code.

Figure 5A shows the modeled concentration gradients of the test system with a polar solvent. Despite the dif-
ferent parameterization, a similar shape of the concentration gradients compared to Fig. 3 is obtained. Figure 5B 
graphs the limited currents that are obtained under the parameter variation of the electrolyte with the polar 
solvent. With a negligible concentration or conductivity of the inert cations C2, the same limited current as in 
the case of the unsupported electrolyte is reached. With an increasing concentration or conductivity the limited 
current drops to the value described by Fick’s first law, in which diffusion is the only driving force. Thus, in this 
case the conduction of C1 has a minor impact on its net transport. Without the supporting salt, the limited cur-
rent is approximately 2 times higher than that described by Fick’s first law. In the case of a variation factor of unity 
(equal properties of inert and active salt), the limited current is 1.25 higher than the diffusion-limited current.

In binary diluted electrolytes the conductivity does not influence the limited current, as the entire current is 
anyway carried by the ions24. However, as here defined by the conductivity ratio (Eq. 2), now the conductivity is 
decisive as it determines how much of the active ions C1 are actually carried by the conduction. The conductiv-
ity is shared between the different types of ions. When the conductivity of the inert ion C2 type becomes much 
larger than that of the active ion C1, the ion C1 is mainly transported by the driving force of the concentration 
gradient as the conduction is mainly done by C2. The limited current increases towards higher values of the 
diffusion coefficient of the inert salt. In this case, a depletion of ions at the cathode is avoided, from which also 
the limited current benefits.

Figure 5C shows the concentration gradient modeled for an ionic liquid. In this case, the amount of anions 
is constant over the distance (see discussion above). Figure 5D shows the modeled limited currents for the ionic 
liquid scenario. Without the supporting salt, the limited current is infinite as the boundary condition of the 
constant anion concentration does not allow a concentration gradient. With small additions of the supporting 
electrolyte, the supporting salt accumulates at the cathode and high concentration gradients of C1 over small 

Figure 5.   Modeled data to examine the influence of the electrolyte parameters on the limited current for an 
electrode distance of 0.1 cm , an initial concentration of c = 0.1M , a molar conductivity � = 100 S cm2 mol

−1 
and a diffusion coefficient of D = 10−6 cm2 s−1 of the supporting salt and the reactive ion pair. (A) 
Concentration gradients obtained for the polar solvent. (B) Parameter variation for the polar solvent. The 
variation factor on the x-axis is multiplied to either the concentration, molar conductivity or diffusion 
coefficient of the supporting salt. Blue lines: Diffusion-limited current calculated by Fick’s first law and the 
limited current without addition of supporting salt. (C,D) Same as (A) and (B) but for an ionic liquid, where the 
ion displacement is confined as described in the text in more detail.
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distance close to the cathode result, for which the limited currents are orders of magnitude higher than those in 
the case of the polar solvent. Towards infinite concentrations or conductivities of C2, the limited current drops 
to the diffusion-limited current described by Fick’s first law (see reference24).

Application of the results in electrochemical devices.  The results on the copper based model system 
can find direct application in the design of electrochemical processes and devices such as copper refining4,5 or 
aqueous copper/sulfur batteries55,56. However, the aim of this article is to conclude physicochemical relations 
that are applicable to a wider scope and which are independent of the parameterization of the presented model 
system. With the knowledge that the limited current decreases with the amount of supporting ions, the addition 
of inert ions displays a compromise between an increased conductivity and a decreased limited current. When 
the electrolyte is mechanically mixed by convectional forces, the concentration gradients formed by the elec-
trochemical current are partly equilibrated. Thus, the diffusion-limited currents in such flowing electrolytes is 
larger than in the case of static electrolytes. Causes for such convection can be found in: (i) Macroscopic density 
difference, where the gravitational force leads to shear forces. (ii) Bubble formation and ascending bubbles. (iii) 
Mechanical mixing of the electrolyte by stirring or pumping.

In ionic liquids, the electrode is always in contact with the electrolyte, which reduces with reference to Fig. 5 
the depletion of the active ion type at the electrode in comparison to solvent based electrolytes. However, high 
viscosities typically cause smaller diffusion coefficients and conductivities of the active ion types in ionic liquids 
than that those of solvent based electrolytes. As a result, limited currents can display a severe limitation for elec-
trochemical devices and processes that operate with ionic liquids. Further studies have to follow to experimentally 
examine limited currents in ionic liquids.

Conclusion
This study examined the ion conduction, current-driven concentration gradients and related limited currents 
in supporting electrolytes. A computational model is developed to describe the ion transport and the related 
spatiotemporal ion concentrations in electrolytes with three ion types. This model is equipped with differ-
ent concentration-dependent parameterization scenarios and evaluated with measured limited currents of 
CuSO4–Na2SO4 electrolytes. The comparison of measured and modeled data shows that a complex concentra-
tion-dependent parameterization of the interaction between the different ion types in supporting electrolytes 
is required to adequately model the ion transport. A computational study on the variation of the electrolyte 
parameters reveals the ion transport mechanisms and the interplay of electric-field and diffusion-driven ion 
motion. With an infinite amount of supporting salt in the electrolyte, the conduction-driven transport of the 
active ion becomes negligible and the limited current drops to the diffusion-limited current that is described by 
Fick’s first law. The similarities and differences of the ion transport in supporting electrolytes and ionic liquids is 
examined with the computational model, showing the impact of electrolyte parameters on limited currents.

Data availability
All data of the computational model generated or analysed during this study are included in this published 
article and its supporting information as it can be calculated and reproduced with the provided source code. 
The experimental datasets used and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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