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We calculate a resummed equation of state with lattice QCD simulations at imaginary chemical
potentials. This work presents a generalization of the scheme introduced in [Phys. Rev. Lett. 126, 232001
(2021) to the case of nonzero μS, focusing on the line of strangeness neutrality. We present results up to
μB=T ≤ 3.5 on the strangeness neutral line hSi ¼ 0 in the temperature range 130 MeV ≤ T ≤ 280 MeV.
We also extrapolate the finite baryon density equation of state to small nonzero values of the strangeness-to-
baryon ratio R ¼ hSi=hBi. We perform a continuum extrapolation using lattice simulations of the 4stout-
improved staggered action with 8, 10, 12 and 16 time slices.
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I. INTRODUCTION

The properties of hot and dense strongly interacting
matter are the subject of many theoretical and experimental
studies. At zero baryon density, first principle lattice QCD
simulations showed that the transition between deconfined
and confined matter is a crossover [1]. It is conjectured that
the crossover line in the temperature(T)-baryochemical

potential(μB) plane eventually turns into a line of first
order transition at a critical endpoint [2–7].
At finite baryon density, lattice simulations face the

infamous complex action or sign problem [8,9]. Most
results on finite density QCD therefore come from indirect
methods, such as reweighting from zero chemical potential
[10–16], Taylor expansion around zero chemical potential
[17–28], or analytic continuation from imaginary chemical
potentials, where the sign problem is absent [29–44]. More
direct simulation approaches at finite density include
certain reweighting techniques [16,45,46], the complex
Langevin equation [47–49] and methods based on
Lefschetz thimbles [50–52]. Results with these more direct
methods for full QCD are for the moment nonexistent (for
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Lefschetz thimbles) or sparse (for complex Langevin and
reweighting).
Another approach to locate the critical endpoint is the

analysis of data from heavy ion collision experiments. An
important tool for heavy ion phenomenology is the use of
relativistic hydrodynamic simulations [53–55]. These in
turn need the equation of state as a theoretical input in the
whole range of temperatures and densities covered by the
experiment.
The equation of state at zero density (or baryochemical

potential) is known in the continuum limit from the
crossover region [56–58] up to very high temperatures
[59] where it can be matched with results from resummed
perturbation theory [60–62].
The most straightforward way to extend the equation of

state to finite chemical potentials is the use of a Taylor
expansion in the chemical potential. For the pressure this
reads:

p
T4

ðT; μ̂B; μ̂S; μ̂QÞ ¼
X
ijk

1

i!j!k!
χBSQijk ðTÞμ̂iBμ̂jSμ̂kQ; ð1Þ

where the generalized susceptibilities are defined as

χBSQijk ¼ ∂
iþjþkðp̂Þ

∂
iμ̂B∂

jμ̂S∂
kμ̂Q

; ð2Þ

and the dimensionless baryochemical potential is μ̂B ¼ μB
T ,

and similarly for the strangeness chemical potential μS and
the electric charge chemical potential μQ. The dimension-

less pressure is p̂ ¼ p
T4. The expansion coefficients χBSQijk

can be calculated either by direct simulations at zero
chemical potential, or by simulations at imaginary chemical
potentials followed by a fit. The Taylor coefficients are
known up to fourth order in the continuum limit [22–24].
At high temperatures, these coefficients match those
calculated from resummed perturbation theory [63–65].
At finite lattice spacings, also the sixth and eighth deriv-
atives have been calculated, albeit with modest preci-
sion [28,42].
Naive truncations of the Taylor expansion show unde-

sirable properties above μB=T⪆ð2–2.5Þ: namely, unphys-
ical oscillations in the equation of state. This is due to the
sign structure of higher order coefficients starting from χB6 ,
which is in turn caused by the μ̂B dependence of the
crossover transition [4,66–69]. It appears that extrapolating
through the crossover transition—as one is forced to do
with Taylor expansions at a fixed temperature—is hard.
One can go beyond fixed order polynomials, by con-

sidering resummations of the Taylor series. The classic
example of this is Padé resummation, which has been used
also for finite density QCD [32,44,70,71]. While the
convergence properties of Padé approximants are in general
superior to ordinary Taylor expansions, it is hard to tell

which expansion will work better at the low orders of the
expansion available.
A way to extend the chemical potential range accessible

by indirect methods already at low orders of the approxi-
mation is the use of a physically motivated extrapolation
scheme. Recently, in Ref. [69] the authors of this paper
introduced exactly such a scheme. It was motivated by an
important finding in recent studies of the crossover region
at imaginary chemical potentials: the existence of an
approximate scaling variable Tð1þ κμ̂2BÞ, where T is the
temperature, and μB the baryochemical potential. As a
function of this variable, many observables—such as the
chiral condensate or the baryon number-to-chemical poten-
tial ratio χB1 =μ̂B—collapse to a single curve when measured
at different fixed values of ImμB=T as a function of
temperature [43,69]. Up to μB=T ¼ 1.5 the existence of
an approximate scaling variable has also been confirmed
directly at a real baryochemical potential, by reweighting
from the sign quenched ensemble [46].
One might suspect that the existence of such an

approximate scaling variable is ultimately related to criti-
cality in the two-flavor chiral limit of QCD [72,73]. If the
universal contribution to the equation of state is large, one
expects a single scaling variable—which is a combination
of the quark mass, the temperature and the chemical
potential—to govern most thermodynamic observables.
If in the low chemical potential region the strength of
the transition is ultimately governed by the quark mass, one
expects curves sensitive to criticality to not change shape
significantly at small chemical potentials. This is also
consistent with the observation that the width of the
crossover transition is, to a good approximation, constant
at small μB [35,43].
Based on these observations, one can define for an

observable F of interest (of sigmoid shape in the temper-
ature, such as χB1 =μ̂B) the following ansatz:

FðT; μ̂BÞ ¼ FðT 0; 0Þ; ð3Þ

where the chemical potential dependence is absorbed in the
rescaled temperature T 0 ¼Tð1þ κF2 ðTÞμ̂2Bþ κF4 ðTÞμ̂4Bþ�� �Þ.
The superscripts on the κFn denote that the expansion
coefficients are different for different observables. The
approximate constant strength of the crossover transition
at small chemical potentials is manifest in the approximate
temperature independence of the coefficient κ2ðTÞ in the
crossover region. A strengthening or weakening of the
transition at larger chemical potentials could in turn manifest
itself in a nontrivial temperature dependence of the higher
order expansion coefficients κn in the crossover region.
While in our previous study in Ref. [69] we showed the

QCD equation of state up to μB=T ¼ 3.5 for the simplest
case of μS ¼ μQ ¼ 0, for the phenomenologically more
relevant strangeness neutral line hSi ¼ 0, the equation of
state from first principle calculations is still only available
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as a fixed order Taylor expansion at fixed T, and it therefore
covers a rather limited range in the chemical potentials, due
to the aforementioned unphysical oscillations.
Here, we extend our previous investigations using our

novel resummation scheme, conducted at zero strangeness
chemical potential μS ¼ 0 in Ref. [69] to the strangeness
neutral line, and present results up to μB=T ¼ 3.5 in this
setting. This equation of state can be used in hydrodynamic
simulations where local strangeness neutrality is enforced.
We also introduce an additional component to the

resummation scheme—the Stefan-Boltzmann correction
discussed in the next section. This will improve the
convergence of our ansatz at high temperatures, where
the aforementioned approximate scaling does not hold.
Finally, we go beyond strangeness neutrality by calcu-

lating, at finite real μB, the expansion coefficients needed to
calculate the equation of state at small values of the
strangeness-to-baryon number ratio:

R≡ hSi
hBi ¼

χS1
χB1

: ð4Þ

This allows one to relax the condition of local strangeness
neutrality in hydrodynamic simulations. This is necessary,
as in a heavy ion collision, only global strangeness neutral-
ity is guaranteed, and local charge fluctuations can be large.
The structure of the paper is as follows. In Sec. II we

briefly describe the strangeness neutrality condition. In
Sec. III. we formally define our extrapolation ansatz on the
strangeness neutral line, including the Stefan-Boltzmann
correction. In Sec. IV we describe our method to determine
the extrapolation coefficients. In Sec. V we use the
coefficients determined in Sec. IV to calculate thermody-
namics at finite real chemical potentials both on the
strangeness neutral line and in its vicinity.

II. STRANGENESS NEUTRALITY

When enforcing strangeness neutrality, two sets of
conditions are widely used in the literature. In the first,
one sets μQ ¼ 0 and defines a curve in the μB − μS plane by
the condition χS1 ¼ 0. By differentiation, this implies:

dμS
dμB

¼ −
χBS11
χS2

: ð5Þ

On this line, total derivatives with respect to the baryo-
chemical potential read

d
dμ̂B

¼ ∂

∂μ̂B
þ dμ̂S
dμ̂B

∂

∂μ̂S
¼ ∂

∂μ̂B
−
χBS11
χS2

∂

∂μ̂S
: ð6Þ

We denote the total derivatives of the dimensionless
pressure with respect to the baryochemical potential along
the line μQ ¼ 0 and χS1 ¼ 0 as:

cBn ðT; μ̂BÞ≡ dnp̂ðT; μ̂BÞ
dμ̂nB

����μQ¼0

χS
1
¼0

: ð7Þ

The cBn ðT; μ̂BÞ essentially are the expansion coefficients of
a Taylor expansion carried out along the line with μQ ¼ 0

and χS1 ¼ 0, where the leading one

cB1 ðT; μ̂BÞ ¼ χB1 −
χBS11
χS2

χS1 ¼ χB1 ; ð8Þ

reduces to the net baryon density, while the second one
reads:

cB2 ðT; μ̂BÞ ¼ χB2 −
ðχBS11 Þ2
χS2

: ð9Þ

Since a vanishing electric charge chemical potential
μQ ¼ 0 is equivalent to zero isospin, this condition is

equivalent to χQ1 ¼ 0.5χB1 . While this is a much better
approximation for the conditions of a heavy ion collision
than simply taking μS ¼ μQ ¼ 0, there is a further correc-
tion which can be taken into account: the slight isospin
imbalance of the colliding nuclei (typically lead or gold).
This amounts to the two constraints χS1 ¼ 0 and
0.4χB1 ¼ χQ1 , which define a curve in the μB − μS − μQ
space. Along this curve the total derivatives are

d
dμ̂B

¼ ∂

∂μ̂B
þ dμ̂S
dμ̂B

∂

∂μ̂S
þ dμ̂Q

dμ̂B

∂

∂μ̂Q
; ð10Þ

where dμ̂S
dμ̂B

and dμ̂Q
dμ̂B

are given by the solution of the
constraints:

χBS11 þχSQ11
dμ̂Q
dμ̂B

þχS2
dμ̂S
dμ̂B

¼0;

χBQ11 þχSQ11
dμ̂S
dμ̂B

þχQ2
dμ̂Q
dμ̂B

¼0.4

�
χB2 þχBS11

dμ̂S
dμ̂B

þχBQ11
dμ̂Q
dμ̂B

�
:

ð11Þ

In this case, total derivatives will be denoted:

dBn ðT; μ̂BÞ≡ dnp̂ðT; μ̂BÞ
dμ̂nB

����χQ
1
¼0.4χB

1
χS
1
¼0

: ð12Þ

For simplicity, through most of this manuscript, we will
use the first set of conditions with μQ ¼ 0. In Sec. IV B, we
will consider the difference between the two schemes in the
leading order of the Taylor expansion—i.e., we will
calculate cB2 ðT; 0Þ and dB2 ðT; 0Þ and their temperature
derivatives, at which point we will also discuss the rationale
for our choice of the first setting with μQ ¼ 0.
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III. THE EXTRAPOLATION SCHEME

Before describing our extrapolation ansatz, we note that
the ansatz given by Eq. (3), introduced in Ref. [69] for
μS ¼ 0, would also work at strangeness neutrality. The
existence of the approximate scaling variable on the
strangeness neutral line is shown in Fig. 1 for the quantity
cB1 =μB, where on the left panel we show the data points of
our simulations for a 483 × 12 lattice, while on the right
panel we show the same data points as a function of a
rescaled temperature Tð1þ κμ̂2Þ. Notice that the collapse
plot with a constant κ does not work quite as well at high
temperatures. Indeed, one does not expect an approximate
scaling variable outside the crossover range. Our scheme
can still incorporate this behavior by the temperature
dependence of the κn coefficients. In fact, with the ansatz
given by Eq. (3) the coefficient κ2 grows at high temper-
atures (see later).
One shortcoming of this scheme is that its region of

applicability is restricted by the Stefan-Boltzmann limit of
the right hand side of Eq. (3). When the quantity FðT; μ̂BÞ
becomes larger than its infinite temperature limit at μB ¼ 0,
the ansatz in Eq. (3) must break down. It is easy to address
this shortcoming, however, using the scheme only for
observables F that have an infinite temperature limit that
is independent of μ̂B. Given an observable that does not
possess this property, one can easily construct another
observable, simply dividing it by its own Stefan-Boltzmann
limit:

FðT; μ̂BÞ →
FðT; μ̂BÞ
F̄ðμ̂BÞ

; ð13Þ

where the Stefan-Boltzmann limits [74] are denoted by

F̄ðμ̂BÞ ¼ lim
T→∞

FðT; μ̂BÞ: ð14Þ

By construction, the ratio on the right hand side of Eq. (14)
has an infinite temperature limit equal to one, at all values

of μ̂B. By using the ansatz from Eq. (3) on this Stefan-
Boltzmann corrected observable, we arrive at our new
scheme, given by

FðT; μ̂BÞ
F̄ðμ̂BÞ

¼ FðT 0
F; 0Þ

F̄ð0Þ ; ð15Þ

where the temperature on the right-hand side is expanded as

T 0
F ¼ Tð1þ λF2 ðTÞμ̂2B þ λF4 ðTÞμ̂4B þ � � �Þ: ð16Þ

As shown in Fig. 2, this Stefan-Boltzmann correction does
not spoil the collapse plot in the approximate scaling
variable, meaning that the fast convergence of the scheme
in the crossover region is maintained, with a λ2ðTÞ
coefficient that is approximately constant in the crossover
range. The limitation at high temperature is however
removed. Furthermore, as can be seen on the left panel
of Fig. 2, the coefficients λn must go to zero at high
temperatures, as the data points for the different imaginary
chemical potentials almost overlap. This is in contrast to the
scheme of Eq. (3), where κ2 grows at high temperatures.
For any finite order in the expansion in the λn, Eq. (15)

generates an infinite number of terms in the Taylor
expansion of the quantity F, thus the ansatz achieves a
particular resummation of the Taylor expansion. As dis-
cussed in the introduction, this resummation is expected to
converge fast in the crossover region, where the strength of
the transition stays approximately constant.
In this work, we will consider three different observables

F. First, we consider the normalized net baryon density

F ¼ cB1 =μ̂B. By noticing that limμ̂B→0
cB
1
ðT;μ̂BÞ
μ̂B

¼ cB2 ðT; 0Þ,
Eq. (15) becomes:

cB1 ðT; μ̂BÞ
cB1 ðμ̂BÞ

¼ cB2 ðT 0
BB; 0Þ

cB2 ð0Þ
; ð17Þ

where the infinite temperature limits of cB1 and cB2 are

denoted cB1 and cB2 respectively, and

FIG. 1. Left: the scaled total derivative cB1 =μ̂B on the strangeness neutral line from our imaginary chemical potential simulations. The

data points at μB ¼ 0 show the second derivative d2p̂
dμ̂2B

. Right: same observables, with the temperature rescaled by a factor 1þ κμ̂2B.
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T 0
BB ≡ Tð1þ λBB2 ðTÞμ̂2B þ λBB4 ðTÞμ̂4B þ � � �Þ: ð18Þ

The Stefan-Boltzmann limits are easily obtained:

cB1 ðμ̂BÞ ¼ μ̂BcB2 ð0Þ þ μ̂3Bc
B
4 ð0Þ;

cB2 ð0Þ ¼
2

9
; cB4 ð0Þ ¼

4

27π2
: ð19Þ

The cB2 ðT; 0Þ function at μB ¼ 0, together with the temper-
ature-dependent coefficients in Eq. (18), are sufficient to
extrapolate the strangeness-neutral equation of state to
finite baryon density as we will show in Sec. V.
Second, we will consider the normalized strangeness

chemical potential that is needed to realize the χS1 ≡ 0
condition in a grand canonical ensemble: F ¼ MðT; μ̂BÞ≡
μ̂S
μ̂B
ðT; μ̂BÞ. Since

lim
μ̂B→0

MðT; μ̂BÞ ¼ −
χBS11 ðT; 0Þ
χS2ðT; 0Þ

≡MðT; 0Þ; ð20Þ

Eq. (15) becomes:

MðT; μ̂BÞ
Mðμ̂BÞ

¼ MðT 0
BS; 0Þ

Mð0Þ ; ð21Þ

with the Stefan Boltzmann limit Mðμ̂BÞ¼ limT→∞MðT; μ̂BÞ
and

T 0
BS ¼ Tð1þ λBS2 ðTÞμ̂2B þ λBS4 ðTÞμ̂4B þ � � �Þ: ð22Þ

Finally, we will consider F ¼ χS2, and denote its Stefan-

Boltzmann limit by χS2. For this observable, Eq. (15) reads:

χS2ðT; μ̂BÞ
χS2ðμ̂BÞ

¼ χS2ðT 0
SS; 0Þ

χS2ð0Þ
; ð23Þ

where

T 0
SS ¼ Tð1þ λSS2 ðTÞμ̂2B þ λSS4 ðTÞμ̂4B þ � � �Þ: ð24Þ

Note that, at strangeness neutrality, the Stefan-Boltzmann
limits of M and χS2 are independent of μ̂B,

Mðμ̂BÞ ¼ Mð0Þ ¼ 1

3
; χS2ðμ̂BÞ ¼ 1; ð25Þ

FIG. 2. Left: the scaled total derivative cB1 =μ̂B on the strangeness neutral line from our imaginary chemical potential simulations,
divided by its chemical potential dependent Stefan-Boltzmann limit. The data points at μB ¼ 0 show the second derivative cB2 divided by
its Stefan-Boltzmann limit. Right: same observables, with the temperature rescaled by a factor 1þ λμ̂2B.

FIG. 3. The strangeness to baryon chemical potential ratio
(upper panel) and the strangeness susceptibility (lower panel) at
simulated imaginary baryochemical potentials on our 483 × 12
ensembles.
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thus κBSn ¼ λBSn and κSSn ¼ λSSn . This concludes the defini-
tion of our scheme for all observables of interest. We show
the lattice data for M and χS2 on our 483 × 12 ensembles
in Fig. 3.
Finally, in order to illustrate the advantageous properties

of the Stefan-Boltzmann correction mentioned above, we
compare the κBB2 and λBB2 coefficients obtained without and
with the Stefan-Boltzmann correction respectively, in Fig. 4
for our 483 × 12 lattices. One can clearly see that the
diverging behavior of the κ2 coefficient at large temper-
atures is not present in the λ2 coefficient. Thanks to this, our
scheme can be applied at large temperatures as well.
Moreover, the milder temperature dependence of λ2, and
its smaller magnitude, extend that range in μ̂B where our
scheme can be applied.

IV. DETERMINATION OF THE EXPANSION
COEFFICIENTS

A. Lattice setup

We perform simulations with Nf ¼ 2þ 1þ 1 dynami-
cal quark flavors, with physical light, strange and charm
quark masses. We use staggered fermions with fat links
constructed with 4 steps of stout smearing [75] with the
smearing parameter ρ ¼ 0.125 and a tree-level Symanzik-
improved gauge action. This discretization of the QCD
action was first used in Ref. [22], where information about
the line of constant physics can be found. For the scale
setting we use either the pion decay constant fπ ¼
130.41 MeV [76], or the Wilson flow based w0 ¼
0.1725 fm scale introduced in Ref. [77]. Taking into
account the difference between the two scale settings is
part of our systematic error analysis. We use lattices of
temporal extent Nτ ¼ 8, 10, 12 ad 16 to perform a
continuum limit. The spatial volume is given by the aspect

ratio of LT ¼ 4. We performed simulations for imaginary
baryochemical potentials given by Imμ̂B

8
π ¼ 0, 3, 4, 5, 6,

6.5. In addition, for the Nτ ¼ 12 lattices we also have data
at Imμ̂B

8
π ¼ 5.5. Strangeness neutrality was enforced on

our imaginary chemical potential ensembles via the pro-
cedure discussed in Ref. [43].

B. cB2 , d
B
2 and their T derivative at μB = 0

In order to determine thermodynamics at finite real
chemical potentials, the right hand side of Eq. (17), i.e.,
cB2 ðT; 0Þ must be known. For some quantities, like the
entropy, its temperature derivative is also needed. We
describe the determination of this quantity and its derivative
here.
Given the second order quark number susceptibilities at

vanishing chemical potentials, one can express cB2 ðT; 0Þ as
in Eq. (9):

cB2 ðT; 0Þ ¼ χB2 −
ðχBS11 Þ2
χS2

; ð26Þ

which we continuum extrapolate using ourNτ ¼ 10, 12 and
16 lattices (for cB2 ðTÞ and MðTÞ ) or Nτ ¼ 12, 16 and 20
[for χS2ðTÞ], using a tree level improvement for the
observables, as detailed in Refs. [20,56]. For the calculation
of the temperature derivative we use the same procedure as
in Ref. [69]. A procedure which we also describe here, to
make the manuscript self-contained.
The derivatives are obtained by fitting the data with

suitable ansätze, which are then differentiated. We first
divide the temperature range into two parts: the crossover
region and the high temperature region. In the first, we
interpolate cB2 with cubic basis splines with nodes points in
the range T ∈ ½130 MeV; 300 MeV�. We perform a joint fit
of the splines in temperature and in 1=N2

τ . The ansatz reads:

cB2 ðT; 0Þ ¼
Xn
i¼1

αibiðTÞ þ
1

N2
τ

Xn
i¼1

βibiðTÞ: ð27Þ

Here, the basis splines satisfy biðTjÞ ¼ δij where the Tj

with 1 ≤ j ≤ n are the node points for the given basis
function. To estimate the systematics of the interpolation,
we combine results from four sets of the node points Tj.
The systematic error estimation also includes the difference
between the fπ- and w0-based scale settings. We only kept
fits with a Q value higher than 5%, which we then
combined with uniform weights. The cB2 ðTÞ and MðTÞ fits
were constrained at temperatures below 130 MeV to match
predictions from the hadron resonance gas (HRG) model.
In the large temperature range we performed a poly-

nomial fit in 1=T. The known Stefan-Boltzmann limit was
not set as the constant term of the polynomial. Hence, the
fitted value of the constant is not equal to the known infinite
temperature limit, and our fit only allows for interpolation

 0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 120  140  160  180  200  220  240  260  280  300  320

T [MeV]

λ2(T) at Nt=12

κ2(T) at Nt=12

FIG. 4. The κ2 ≡ κBB2 coefficients obtained in the scheme of
Eq. (3) without the Stefan-Boltzmann correction (in blue),
compared to the coefficients λ2 ≡ λBB2 obtained in the scheme
of Eq. (15) with the Stefan-Boltzmann correction (in red) on our
483 × 12 lattices.
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in the range where we have lattice data. The region where
the two ansätze overlap give consistent results in the
temperature range between 200 MeV and 280 MeV for
both cB2 and its T derivative. In the final result, we simply
concatenate the two results at T ¼ 250 MeV. Final results
for cB2 ðT; 0Þ and its logarithmic temperature derivative are
shown in Fig. 5.
We also performed the same analysis for dB2 ðT; 0Þ,

corresponding to χQ ¼ 0.4χB. The results for this quantity
and its temperature derivative are also shown in Fig. 5. At
large temperatures, there is a small but statistically signifi-
cant difference between dB2 and cB2 . The difference of these
Taylor coefficients leads to a small difference between the
leading order chemical potential dependence in these two
cases for high temperatures. The next corrections, corre-
sponding to the λBBn coefficients of our resummation
scheme, would probably also slightly differ in the two
cases, but our lattice results are not yet precise enough to
detect this difference. Therefore, we continue with the
μQ ¼ 0 setting for simplicity.

C. Analysis of the coefficients λ2 and λ4
The analysis proceeds in the same way for all three

observables we study. Denoting by A either one of the
observables cB1 , M ¼ μS

μB
and χS2 and calling B one of cB2 ,

− χBS
11

χS
2

or χS2 respectively, and denoting the corresponding

Stefan-Boltzmann corrected observables by Ã ¼ A=Ā
and B̃ ¼ B=B̄ respectively, our extrapolation ansatz is
defined as

ÃðT; μ̂BÞ ¼ B̃ðT 0; 0Þ: ð28Þ

In the first step of the analysis, a spline interpolation is
performed for Ã at finite imaginary μB and for B̃ at μB ¼ 0.
In the second step, these splines are used for each

imaginary μ̂B, and several values of ÃðT; μ̂BÞ to determine
a T 0 that solves Eq. (28). This procedure is illustrated in
Fig. 6. After finding the values of T 0, we construct the
quantity

ΠðT; μ̂B; NτÞ ¼
T 0ðT; μ̂B; NÞ − T

Tμ̂B
: ð29Þ

Since limμ̂B→0Π ¼ λij2 , with ij being either one of BB, BS
or SS, we can add a data point at μB ¼ 0 by utilizing the
formulas connecting the ordinary Taylor coefficients
defined in Eq. (2) to the λn coefficients defined in
Sec. III. For reference, these formulas are listed in the
Appendix. In the third step, we fit the quantityΠðT; μ̂B; NτÞ
with an ansatz that is linear in 1=N2

τ and either linear or
parabolic in μ2B—i.e.:

ΠðT; μ̂B; NτÞ ¼ λA2 þ λA4 μ̂
2
B þ λA6 μ̂

4
B

þ 1

N2
τ
ðαA þ βAμ̂2B þ γAμ̂4BÞ ð30Þ

where we either fix λA6 ¼ γA ¼ 0 or leave both as free
parameters in the fit.
Systematic errors are estimated by combining several fits

with uniform weights, as long as theirQ value is above 1%.
The different choices in the analysis procedure include:

(i) 3 different sets of spline node points at μB ¼ 0,
(ii) 2 different sets of spline node points at finite

imaginary μB,
(iii) w0 or fπ based scale setting,
(iv) 2 different chemical potential ranges in the global fit:

μ̂B ≤ 5.5 or μ̂B ≤ 6.5,
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FIG. 5. cB2 ðT; μ̂B ¼ 0Þ, dB2 ðT; μ̂B ¼ 0Þ and their logarithmic
temperature derivatives in the continuum limit, extrapolated from
our Nτ ¼ 10, 12 and 16 lattices. FIG. 6. The determination of the rescaled temperatures T 0

BB by
spline fits to the data at zero and imaginary baryochemical
potential. Solid lines represent the spline fits to the lattice data,
while transparent lines represent the shifts ΔTBB ¼ T 0

BB − T
extracted from the splines.
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(v) 2 functions for the chemical potential dependence of
the global fit: linear or, parabola

(vi) including the coarsest lattice, Nτ ¼ 8, or not, in the
continuum extrapolation.

This amounts to a total of 3 × 25 ¼ 96 fits entering the
systematic error estimation.
In order to calculate certain thermodynamic quantities at

finite chemical potential, such as the entropy, the

temperature derivative of the λn coefficients is also needed.
To estimate these derivatives we perform an uncorrelated fit
of the obtained expansion coefficients with a fourth order
polynomial ansatz for the λij2 and a second order poly-
nomial ansatz for the λij4 . For the lower end of our
temperature range, the fits are constrained to the values
predicted by the hadron resonance gas model. Two points
from the HRG model, at T ¼ 125, 130 MeV, are included
in the fit with fictitious errors of the approximate size of the
error in our lattice data, so not to dominate the fit. This
approximately amounts to a 10% and a 100% errors in the
λij2 and λij4 , respectively. The expansion coefficients and the
fits used to estimate their temperature derivative are shown
in Fig. 7. All of the λ2 coefficients are approximately
constant in the crossover range, as is expected from the
existence of the approximate scaling variable, discussed in
the introduction. With the exception of λSS2 , the λ2 coef-
ficients all go to zero within error bars at higher end of our
temperature range, as was anticipated in the discussion of
Fig. 2. The λSS2 is still nonzero, as the strangeness
susceptibility χS2 tends to its Stefan-Boltzmann more
slowly, due to the larger strange quark mass.

V. THERMODYNAMICS AT REAL μB

A. Thermodynamics on the χ S1 = 0 line

As we already stated, since μQ ¼ 0 and χS1 ¼ 0, on the
strangeness neutral line we have cB1 ¼ χB1 . Therefore, the
ansatz in Eq. (17) gives us the baryon number at finite
chemical potential directly. In a similar manner, the ratio
μS=μB and the strangeness susceptibility χS2 are calculated
directly from Eq. (21) and Eq. (23), respectively. To obtain
the pressure, the entropy density and the energy density, we
start from cB1 . For the pressure, one has to calculate the
following integral:

pðT; μ̂BÞ
T4

¼ pðT; 0Þ
T4

þ
Z

μ̂B

0

cB1 ðT; μ̂0BÞdμ̂0B; ð31Þ

where

cB1 ðT; μ̂BÞ ¼ cB2 ðT 0; 0Þ c
B
1 ðμ̂BÞ
cB2 ð0Þ

; ð32Þ

and the pressure at zero chemical potential is taken from
Ref. [57]. The entropy density is defined as

s ¼ ∂p
∂T

����
μB;μS

; ð33Þ

which can be rewritten in terms of dimensionless
quantities as:
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FIG. 7. Expansion coefficients λBBn (top panel), λBSn (middle
panel) and λSSn (bottom panel) in the continuum. Also shown are
the polynomial fits used in the next section, as well as predictions
from the hadron resonance gas model, which were used to
constrain the fits at low temperatures.
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ŝ ¼ 4p̂þ T
∂p̂
∂T

����
μB

¼ 4p̂þ T
∂p̂
∂T

����
μ̂B

− μ̂Bχ
B
1 ; ð34Þ

where ŝ≡ s
T3 and we took into account the difference

between derivatives at fixed μB versus at fixed μ̂B. By
noticing that on the strangeness neutral line

dp̂ðT; μ̂B; μ̂SðT; μ̂BÞÞ
dT

¼ χS1
∂μ̂S
∂T

þ ∂p̂
∂T

¼ ∂p̂ðT; μ̂B; μ̂SðT; μ̂BÞÞ
∂T

; ð35Þ

we can write the logarithmic temperature derivative of the
pressure as:

T
∂p̂ðT; μ̂BÞ

∂T

����
μ̂

¼T
∂p̂ðT;0Þ

∂T
þ1

2

Z
μ̂2B

0

T
dcB2 ðT 0;0Þ

dT 0

����
T 0¼Tð1þλBB

2
yþλBB

4
y2Þ

×

�
1þλBB2 yþλBB4 y2þT

�
dλBB2
dT

yþdλBB4
dT

y2
��

dy ð36Þ

where dcB
2
ðTÞ

dT is calculated at μB ¼ 0 as discussed previously
and shown in Fig. 5.
Given the pressure and the entropy, the dimensionless

energy density is given by:

ϵ̂ ¼ ŝ − p̂þ μ̂Bχ
B
1 ; ð37Þ

where ϵ̂ ¼ ϵ
T4.

The continuum estimates of the dimensionless baryon
number, pressure, entropy density, energy density, μS=μB
ratio and strangeness susceptibility—as computed from the
expansion coefficients up to order λij4—are shown in the
various panels of Fig. 8. Notice that even with the inclusion
of the λij4 coefficients, the statistical errors of our results stay
well under control in the chemical potential range we study.
We also compare our results to predictions from the hadron
resonance gas model, which at low enough temperatures
shows an excellent agreement with our lattice data. As the
chemical potential increases, the crossover temperature
decreases, and the agreement between out lattice results
and the hadron resonance gas gets pushed to lower temper-
atures, as expected. Note that, similarly to our previous
results for the μQ ¼ μS ¼ 0 case in Ref. [69], none of the
observables display the pathological oscillations of trun-
cated Taylor expansions. We explicitly show in Fig. 9 a
comparison of the results for the baryon density in the
present work to those at μQ ¼ μS ¼ 0 in Ref. [69]. The two
sets of results obviously tend to different Stefan-Boltzmann

limits, as a result of the different value of the strange
chemical potential (see Fig. 8, bottom left panel). Besides
the covered temperature range being larger in this work, we
also note that the size of the error is slightly improved. A
similar, although less pronounced effect, will appear in the
pressure, entropy and energy density, as they are dominated
by their value at μB ¼ 0, which is the same in both cases.
For the extrapolation beyond the strangeness neutral line,

the ratio of the baryon-strangeness correlator to the
strangeness fluctuations χBS11 =χ

S
2 will also be needed. In

order to obtain this ratio, we simply note that:

−
χBS11
χS2

¼ dμ̂S
dμ̂B

¼ d
dμ̂B

½μ̂BfBSðT 0
BSðT; μ̂BÞÞ�

¼ μ̂B

�
fBSðT 0

BSÞ þ
∂fBSðT 0

BSðT; μ̂BÞÞ
∂μ̂B

�
; ð38Þ

where we used the shorthand notation fBSðTÞ≡
MðT; 0Þ ¼ − χBS

11

χS
2

ðT; μ̂B ¼ 0Þ. Our results for χBS11 =χ
S
2 are

shown in Fig. 10. In addition to being needed for
extrapolation to finite strangeness, this ratio is also of
interest for freeze-out phenomenology [78].

B. Beyond strangeness neutrality

The quantities calculated so far can also be used to
extrapolate the equation of state to small values of the
strangeness density, slightly off the χS1 ¼ 0 line. Let us
denote the value of the dimensionless strange quark
chemical potential that solves χS1 ¼ 0 at fixed T and μ̂B
as μ̂⋆S . Still considering fixed μ̂B and T, but changing μ̂S
slightly from the strangeness neutral choice by a small
amount

Δμ̂S ≡ μ̂S − μ̂⋆S; ð39Þ

the dimensionless strangeness and baryon densities
become:

χS1ðμ̂SÞ ≈ χS2ðμ̂⋆SÞΔμ̂S ð40Þ

χB1 ðμ̂SÞ ≈ χB1 ðμ̂⋆SÞ þ χBS11 ðμ̂⋆SÞΔμ̂S; ð41Þ

where we only kept the linear leading order terms in Δμ̂S.
We will express thermodynamic quantities in terms of the
strangeness-to-baryon fraction:

R ¼ χS1
χB1

¼ χS2ðμ̂⋆SÞΔμ̂S
χB1 ðμ̂⋆SÞΔμ̂S þ χBS11 ðμ̂⋆SÞ

: ð42Þ

Inverting this equation we get:
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Δμ̂S ¼
Rχ̂B1 ðμ̂⋆SÞ

χS2ðμ̂⋆SÞ − RχBS11 ðμ̂⋆SÞ
: ð43Þ

This quantity is shown for μ̂B ¼ 2 as a function of the
temperature for various values of R in Fig. 11. Substituting
Eq. (43) into Eq. (40) we obtain—to leading order in R:

χB1 ðT; μ̂B; RÞ
χB1 ðT; μ̂B; R ¼ 0Þ ≈ 1þ R

χBS11 ðT; μ̂B; R ¼ 0Þ
χS2ðT; μ̂B; R ¼ 0Þ ; ð44Þ

where all quantities on the right hand side are along the
strangeness neutral line. We show the results of a leading
order extrapolation of the dimensionless baryon density as
a function of T at μ̂B ¼ 2 for several values of R in Fig. 12.
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At the strangeness neutral line theOðRÞ correction of the
pressure vanishes. The leading order correction gives:

p̂ðT; μ̂B; RÞ ≈ p̂ðT; μ̂B; RÞ þ
1

2

d2p̂
dR2

ðT; μ̂BÞR2; ð45Þ

where

d2p̂
dR2

ðT; μ̂BÞ ¼
ðχB1 ðT; μ̂BÞÞ2
χS2ðT; μ̂BÞ

: ð46Þ

This leading order coefficient is show in Fig. 13 for several
values of μ̂B.
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VI. SUMMARY AND DISCUSSION

In this work, we generalized the extrapolation pro-
cedure we introduced in Ref. [69] for the equation of state
to the case of strangeness neutrality. Using zero and
imaginary chemical potential simulations we determined
the first two coefficients in the scheme λij2 and λij4 for the
baryon density, the strangeness chemical potential and the
strangeness fluctuations. Using these coefficients, we
extrapolated the equation of state up to a baryochemical
potential-to-temperature ratio of μ̂B ¼ 3.5, considerably
improving the range covered by first principle lattice
calculations. Just like for the case of μS ¼ μQ ¼ 0 in
Ref. [69], also for the strangeness neutral case we
observed that our extrapolation scheme is free of the
unphysical oscillations that plague the fixed order Taylor
expansions at higher chemical potentials.
We also introduced a Stefan-Boltzmann correction to

improve the rate of convergence of our scheme at high
temperatures. Thanks to this, the coefficient λBB2 goes to
zero at high temperatures.
We moved beyond strangeness neutrality by calculating

the baryon-strangeness correlator to strangeness suscep-
tibility ratio χBS11 =χ

S
2 at finite real μ̂B on the strangeness

neutral line. This allows one to perform a leading order
extrapolation of the baryon number in the ratio
R ¼ χS1=χ

B
1 .

Apart from increasing precision through higher statistics,
this work can be extended in the future to take the small
isospin imbalance χQ1 ¼ 0.4χB1 of lead and gold nuclei into
account beyond leading order. With significantly more data
taking, a full scan of the μB-μS plane is possible, thus
determining the equation of state for higher values of the
strangeness-to-baryon ratio. It will be valuable to see
whether the calculation of even higher order coefficients
(e.g., κij6 ) will alter the presented picture or introduce
significant improvements in the range explored by the
RHIC Beam Energy Scan program.
We also mention that, while for the ordinary Taylor

expansion of the pressure estimates of the radius of
convergence exist both on coarse lattices [26,27,71,79]
and from phenomenological arguments [80,81], the ulti-
mate convergence properties of our scheme are com-
pletely unknown at the moment. As our ansatz is not a
Taylor series for the pressure, its domain of convergence is
not necessarily a circle in the complex plane. Furthermore,
the scheme is generalizable also for non-polynomial
approximations of T 0, such as rational functions. The
domain of convergence of our scheme is an interesting
theoretical question. It, however, has no practical conse-
quence at the moment, as the λij4 are already consistent
with zero, leading to fast apparent convergence at low
orders.
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APPENDIX: λij2 COEFFICIENTS FROM TAYLOR
COEFFICIENTS

For reference, we list here the relationships between our
λ2 coefficients and ordinary Taylor coefficients. For the
expansion coefficient of the baryon density, we get:

λBB2 ¼ 1

6Tf0ðTÞ
�
cB4 ð0; TÞ −

cB4 ð0Þ
cB2 ð0Þ

fðTÞ
�
;

where fðTÞ ¼ d2 logZ
dμ2B

ðμB ¼ 0; TÞ. For the expansion coef-

ficient of the strangeness chemical potential we get

λBS2 ¼ 1

Tf0ðTÞ s3ðTÞ ¼
1

6Tf0ðTÞ
d3μ̂S
dμ̂3B

ðTÞ;

where μ̂S
μ̂B
ðμ̂B; TÞ ¼ s1ðTÞ þ s3ðTÞμ̂2B þ s5ðTÞμ̂4B þ � � � and

fðTÞ¼ limμ̂B→0
μ̂S
μ̂B
ðμB;TÞ¼− χBS

11

χS
2

ð0;TÞ. For the expansion

coefficient of the strangeness susceptibility we get

λSS2 ¼ 1

2Tf0ðTÞ S
NLO
2;symð0; TÞ;

where fðTÞ ¼ χS2ðμB ¼ 0; TÞ.
In principle, the λ4 coefficients can also be expressed

using the Taylor coefficients at μ≡ 0. For these one needs
the Taylor coefficients up to sixth order and the second
temperature derivative of the second order coefficients. For
the quantities discussed in this paper we have:
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λBB4 ðTÞ ¼ 1

360T
1

c̄B2 ð0Þ2f0ðTÞ3
· ½3c̄B2 ð0Þ2cB6 ð0; TÞf0ðTÞ2−10c̄B4 ð0Þf0ðTÞ2ðc̄B2 ð0ÞcB4 ð0; TÞ − c̄B4 ð0ÞfðTÞÞ

−5f00ðTÞðc̄B2 ð0ÞcB4 ð0; TÞ − c̄B4 ð0ÞfðTÞÞ2�; ðA1Þ

λBS4 ðTÞ ¼ s5ðTÞ
Tf0ðTÞ −

s3ðTÞ2f00ðTÞ
2Tf0ðTÞ3

¼ 1

120Tf0ðTÞ
d5μ̂S
dμ̂5B

ðTÞ − f00ðTÞ
72Tf0ðTÞ3

�
d3μ̂S
dμ̂3B

ðTÞ
�

2

;

ðA2Þ

λSS4 ðTÞ ¼ 1

24Tf0ðTÞ3 ðS
NNLO
2;sym ð0; TÞf0ðTÞ2 − 3f00ðTÞSNLO2;symð0; TÞ2Þ; ðA3Þ

with

SNLO2;symð0; TÞ ¼ χBS22 ð0; TÞ þ 2s1ðTÞχBS13 ð0; TÞ þ s1ðTÞ2χS4ð0; TÞ ðA4Þ

SNNLO2;sym ð0; TÞ ¼ χBS42 ð0; TÞ þ 4s1ðTÞχBS33 ð0; TÞ þ 6s1ðTÞ2χBS24 ð0; TÞ þ 4s1ðTÞ3χBS15 ð0; TÞ
þ s1ðTÞ4χS6ð0; TÞ þ 24s3ðTÞχBS13 ð0; TÞ þ 24χS4ð0; TÞs1ðTÞs3ðTÞ ðA5Þ

where we used the expansion coefficients of μ̂Sðμ̂BÞ:

s1 ¼ −
χBS11
χS2

ðA6Þ

s3 ¼ −
1

6χS2
½χS4s31 þ 3χBS13 s

2
1 þ 3χBS22 s1 þ χBS31 � ðA7Þ

s5 ¼ −
1

120χS2
½þχS6s

5
1 þ 5χBS15 s

4
1 þ 10χBS24 s

3
1 þ 60χS4s

2
1s3 þ 120χBS13 s1s3 þ 60χBS22 s3 þ 10χBS33 s

2
1 þ 5χBS42 s1 þ χBS51 �: ðA8Þ
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