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ABSTRACT   

Much attention is currently devoted to developing diagnostic classifiers for mental disorders. 

Complementing these efforts, we highlight the potential of machine-learning to gain biological 

insights into the psychopathology and nosology of mental disorders. Studies to this end have 

mainly used brain imaging data, which can be obtained non-invasively from large cohorts and 

have repeatedly been argued to reveal potentially intermediate phenotypes. This may become 

particularly relevant in light of recent efforts to identify MRI derived biomarkers that yield 

insight into pathophysiological processes as well as to refine the taxonomy of mental illness. In 

particular, the accuracies of machine-learning models may be used as dependent variables to 

identify features relevant to pathophysiology. Moreover, such approaches may help to 

disentangle the dimensional (within diagnosis) and often overlapping (across diagnoses) 

symptomatology of psychiatric illness. We also point out a multi-view perspective that 

combines data from different sources, bridging molecular and system-level information. 

Finally, we summarize recent efforts toward a data-driven definition of subtypes or disease 

entities through unsupervised and semi-supervised approaches. The latter, blending 

unsupervised and supervised concepts, may represent a particularly promising avenue toward 

dissecting heterogeneous categories. Finally, we raise several technical and conceptual aspects 

related to the reviewed approaches. In particular, we discuss common pitfalls pertaining to 

flawed input data or analytic procedures that would likely lead to unreliable outputs.    
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Substantial efforts have been devoted to building machine learning models for aiding or 

automating clinical decisions related to diagnosis, treatment guidance and prognosis (1,2). 

Such models learn patterns relating the input features to targets from training data that are then 

expected to generalize to new subjects (3). This predictive ability combined with the current 

lack of objective means for diagnosing mental disorders created enthusiasm in the psychiatric 

neuroimaging community. Researchers eagerly, and rightly so, trained classification models 

(4-7) as potentially objective means to aid standard (interview-based) strategies. As an 

important benefit, explainable models may further provide biological markers that could add 

validity to the extant diagnostic system and treatment design.  

These motivations combined with promising initial accuracies as well the increased data 

availability through large data-sharing initiatives, fueled a booming research area of psychiatric 

machine learning, mainly using brain MRI data. As a non-invasive, in vivo technique, MRI 

investigations have added valuable insights into the pathophysiology of psychiatric disorders 

by revealing brain structural, functional and metabolic abnormalities (8-11) as possible 

intermediate phenotypes (12).  

While these topics have been covered multiple times, we here review several developing, 

complementary lines of research using machine learning to gain insights into the neurobiology 

underlying psychopathology and the nosological structures of mental illness. These studies 

have opened new windows into the neurobiological aspects underlying particular disorders, the 

relationships among diagnostic groups and potential heterogeneities within them.  
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In the following, we will cover three directions in the current literature that hold substantial 

promise for applying machine learning in psychiatric neuroimaging and beyond. I) Using 

prediction accuracy as a dependent variable to investigate the pathophysiological relevance of 

different feature sets in both single- and multi-view fashions. II) Gaining insights into nosology 

through differential accuracies between disorders. III) Data-driven consolidation to disentangle 

heterogeneous disorders and redefine clinical entities. We will concentrate on MRI to keep the 

scope manageable and focused. Notwithstanding, many of the proposed perspectives and 

considerations apply likewise to data from other imaging modalities and biological sources, 

which should complement the system-level surrogate markers of pathophysiology provided by 

MRI (13). In particular, molecular assays could potentially be closer to the actual pathological 

process, although they are likely less sensitive to systemic phenomena like dysregulated 

connectivity.   
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1.-Accuracies as the dependent variable to select informative brain features in single- and 

multi-view fashions  

Supervised machine learning requires, for each subject, a set of input features (such as regional 

brain volume measurements or estimates of connectivity strengths) and a target label. In this 

context, we note that labels can be categorical for diagnostic classifiers or continuous, e.g., 

representing clinical or psychological phenotypes. The task of the algorithm is then to learn a 

relationship between the features and the target that optimally generalizes to new observations 

(3). This can be evaluated by providing the trained model with the features of new subjects and 

comparing the predicted labels against the true ones, which are known but not available to the 

model. When comparing various features in such an approach, it becomes evident that the 

observed accuracies directly provide information on the predictive power and hence relevance 

of a feature set (14). Conversely, features that yield the highest accuracies are likely to 

represent or relate to a core aspect of the target, i.e., pathophysiology. From a technical 

perspective, two approaches may be differentiated:  

1) Comparing accuracies for different types of features. In this case, different a priori 

feature-sets, such as different types of MR images, connectivity values for different networks 

or parcellation schemes, may be presented. Classification accuracies can be compared across 

feature sets (in the same subjects, predicting the same target) to rank them according to their 

predictive capacity (8,15,16). Thus, we can infer which features provide the most generalizable 

and hence robust prediction. These are then interpreted as the most likely neurobiological 
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substrate of the investigated disorder among the investigated aspects of brain structure, 

function and connectivity. 

2) Pruning a broad feature set. Here, all available features are provided to the algorithm, 

which is then tasked with extracting the most relevant features either by iteratively ranking 

features based on usefulness due to prediction power (wrapper approach)(17) or by estimating 

feature importance while training (embedded approach)(18). In essence, these approaches aim 

to find a subset of the features that is not worse or even better – through a more favorable 

feature-sample ratio – than the full data.  

Both strategies have been employed to detect potential elements of pathophysiology for 

several psychiatric disorders (Figure 1A&1B). In schizophrenia, they repeatedly pointed 

toward abnormalities in the prefrontal cortex, the lateral temporal lobes, the striatum, and the 

thalamus as well as the posterior parietal cortex and the precuneus as discriminative aspects of 

neurobiology (16,19,20). Interestingly, in particular the latter two regions also seemed to be 

discriminative between schizophrenia patients with predominantly positive vs. negative 

psychopathology (8). Studies contrasting schizophrenia to other psychiatric illnesses revealed 

frontal and temporal cortices as well as cingulate, cerebellar and subcortical regions as the 

most salient features (21，22). Informative MRI features to robustly distinguish between 

attention deficit hyperactivity disorder (ADHD) types (23) and predict the prognosis of late-life 

depression (24) have likewise been identified.   

Since mental illness likely represents multi-scale pathology spanning genetic, molecular, 

cellular and system levels (27,28), data from other biological sources like genetic assays 
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should contain complimentary information for the understanding of (individual presentations 

of) mental disorders (29,30). The aforementioned approaches could thus be applied to select 

respective features from each data type, and information fusion methods (31) like multi-kernel 

and stacked learning may then be used for a unified representation (Figure 1C; for extended 

reading please see 

https://www.sciencedirect.com/journal/information-fusion/special-issue/10MJ9Z5TNCP). 

Following this approach, the expression profile of genes related to autism spectrum disorder 

(ASD) was revealed to complement resting-state functional connectivity (rsFC) as robust 

features in classifying typically developing children versus ASD (31). Sub-space learning 

methods (32), such as canonical correlation analysis (CCA), can achieve similar goals which 

often assume that the input features from different views are related in a common subspace. 

The algorithms are then used to extract latent patterns of the input data while retaining 

correlations across views (33), as widely used in psychiatric studies (cf section 3 below).   

As data like multi-tracer PET maps and postmortem transcriptional profiles are not 

routinely attainable for individual patients, recent efforts integrated machine-learning-derived 

MRI features and information from other sources using spatial correlation in a post-hoc manner 

(Figure 1D). Employing this approach to schizophrenia, Li et al. (34) linked striatal activity 

abnormalities to dopamine D2/D3 receptor availability and dopamine synthesis capacity as 

well as genes encoding particularly dopamine receptor D2 and glutamate metabotropic receptor, 

while Chen et al. (8) bridged cognitive symptomatology, socio-affective brain network 

functionality, and the dopamine and serotonin systems.  
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However, caution and careful evaluations are needed to prevent overfitting in a finite 

amount of data (25) when the optimization objectives are related to the feature-selection 

criteria. This becomes particularly relevant as for different modalities, variable levels of 

overfitting could occur due to the size of the respective feature sets. Hence, evaluations using 

independent test samples are particularly relevant to avoid leakage, circularity and inflated 

performance (26). Under strict evaluation, a different number of features across modalities per 

se should not impair comparability. However, complexities such as interactions and 

nonlinearities among candidate features continue to pose challenges to the identification of a 

small number of predictive features with explanatory value, especially in multi-view scenarios. 

Consequently, different forms of regularization have been utilized for feature selection and 

fusion, although there is not yet a consensus on the best approach beyond recommendations of 

careful design and skeptical exploration (35-37).  

Overall, leveraging feature selection methods in a stringent way and incorporating clean 

external validation may pave the way toward unraveling robust and generalizable 

neurobiological underpinnings of psychiatric illness (Figure 1E). Multi-view perspectives 

might be particularly necessary and promising to provide corroborative and complementary 

molecular information to MRI findings and may thus provide important leads for linking across 

multiple levels of description. Given the growing number of datasets that allow the type of 

investigations covered (such as the Brain Genomics Superstruct Project and the UK Biobank), 

they are now readily available, as well as approaches rapidly developed in the field that are 
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widely implementable to fuse multiscale data. However, caution is warranted given the ensuing 

size and complexity of feature sets vis-à-vis the still finite amount of available cases. 

 

2- Accuracies to inform nosological relationships between disorders 

Current nosological systems such as the DSM-5 and the ICD-10 represent core pillars of 

psychiatric diagnosis and by extension research into the neurobiology of mental illness. 

However, it needs to be remembered that in addition to being based on patients’ self-report and 

clinicians' assessment, inherently limiting objectivity and hence reliability, these systems 

fundamentally represent historically derived heuristics rather than well-defined biological 

classifications. This leads to two important challenges. First, diagnostic criteria for a disorder 

such as depression or schizophrenia comprise a range of symptoms out of which a certain 

number need to be present – often separated into core and accessory ones – leading to a large 

number of possible symptom-combinations resulting in the same diagnosis (38,39). This can be 

problematic as specific symptoms are likely causally linked and differ in the underlying 

neurobiology (40,41). Second, the current classification systems yield high rates of 

comorbidity between psychiatric disorders (42), potentially attributable to the misalignment 

between biological groupings and nosological entities. Corroborating this conjecture is a large 

body of literature indicating a substantial overlap across diagnostic groups in aspects ranging 

from genetics and molecular features to brain atrophy and network abnormalities (43-45). This 

poses a major challenge to differential diagnoses based on machine-learning classifiers as 

indicated by relatively poor performance even in cases where subjects were optimistically 
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selected to be free of comorbidities. For example, a recent study applying state-of-the-art deep 

learning to differentiate patients with schizophrenia, schizoaffective and bipolar disorders (BDs) 

from each other and healthy controls yielded only a moderate overall accuracy of 46% (21). 

However, it also opens the door toward systematic investigations into relationships between 

current categories using classification accuracies as the dependent variable and potentially the 

redefinition of disease entities. 

For example, some diagnostic categories are more easily “confused” on the 

neurobiological level than others, and this relationship does not necessarily follow clinical 

similarities. One particularly interesting case in this context is BD (Figure 2A). Patients with 

BD are almost indistinguishable from those with major depression (46) or schizophrenia (47) 

based on structural MRI metrics or connectivity patterns, as in both cases classification 

performance was below 60%. However, patients with major depression are much more 

robustly differentiated from those with schizophrenia based on structural MRI (76% 

accuracy)(22), and classification based on symptomatology significantly differentiates BD 

from unipolar depression despite a lack of differentiating MRI features in the same sample 

(48).  

Reversing the conventional perspective on machine-learning, the inverse of these 

accuracy measures may hence be used as a proxy for the biological relationships between 

clinical labels. Indeed, there is converging evidence for genetic, molecular and physiological 

overlap of BD with both major depression and schizophrenia (28,49-51). Nevertheless, it bears 

mention that despite the shared biology, pharmacological therapy for BD usually requires a 
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combination between antipsychotic medication akin to the therapy of schizophrenia and 

mood-stabilizers, i.e., drugs that are not commonly used for either schizophrenia or depression, 

while antidepressive (mono-) therapy is not recommended. Although this contrasts with the 

suggested intermediate position of BD, it resonates well with a recent out-of-category 

assessment (34). The idea behind this approach is to train a model to differentiate a group of 

patients (here, schizophrenia patients) from healthy controls and then apply that model to 

patients with other diagnoses under the idea that the distance of these patients from the binary 

decision boundary would reflect the degree to which these patients show an overlap with the 

“schizophrenia-signature” captured by the model. Importantly, among major psychiatric 

disorders, BD showed by far the highest similarity in (striatal) dysfunction with schizophrenia 

(34). Alternatively, we can assess the proportion of patients assigned to (different) categories 

used for classifier training. For example, individuals with generalized anxiety disorder (GAD, 

69%) were much more likely than schizophrenia patients (<10%) to be labeled depressed by a 

classifier trained for depression diagnosis (52).  

Despite the exciting potential of these approaches to unravel nosological relationships, we 

also need to present words of caution that extend beyond the indispensable requirement for 

unbiased methodology and careful out-of-sample validation. These relate to confounding 

effects that can easily be of the same magnitude as the differences under investigation. To 

illustrate this point, classification accuracies for male vs. female (53), young vs. older (54,55) 

or subjects from different scanners (56,57) easily exceed those for diagnostic classifiers. 

Unfortunately, these factors may co-vary with diagnoses due to aspects such as likely age of 
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onset, sex distribution, and differential relationships with additional health issues, including 

drug abuse. In addition, sampling biases may be introduced by the recruitment of different 

populations in different hospitals and hence catchment areas. In contrast to univariate analyses 

where covariates of no interest can rather effectively be regressed out, treatment of 

confounding effects in multivariate settings is non-trivial (58,59,60). 

Overall, we argue that the outlined perspective of mapping neurobiological similarity via 

classification performance together with the concept of identifying core features may represent 

a key avenue for redefining psychiatric nosology into neurobiologically grounded and hence 

actionable categories. Nonetheless, care must be taken to ensure that these indeed show added 

value over the likely crude but ultimately helpful clinical heuristics currently in use. 

 

3-Data-driven consolidation to disentangle heterogeneous disorders and redefine clinical 

entities 

Clinically or theoretically defined categories and their subtypes (61) have received substantial 

criticism for their poor diagnostic stability, validity, and utility (62,63,64). The need for 

defining subtypes inherently relates to the heterogeneity within a disorder, i.e., inter-individual 

variability in clinical phenotypes but likely also neurobiology (65,66). When the strategy 

outlined in the previous section was applied to clinically defined subtypes (23,67), it revealed 

accuracies similar to or exceeding those for cross-disorder classification (Figure 2B). 

While supervised approaches may thus provide a more objective evaluation of the 

distinctiveness and relationship among clinically defined subtypes, an alternative avenue that 
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has received much attention over the past years is the re-definition of disease subtypes in a 

data-driven manner using un-supervised approaches (68,69). The key idea behind these 

approaches is to algorithmically define subgroups within a large set of presumably 

heterogeneous patients (Figure 2C), aiming at finding latent or hidden structures based on 

individual-level features. In clustering approaches, this structure is binary-disjoint, i.e., subjects 

are each assigned into (only) one group, while groups are as homogeneous and distinct as 

possible. Alternatively, the structure could be continuous-overlapping, in which case the 

variance within the feature space is explained by a low-dimensional set of variables and each 

individual is then represented by how strongly their features load onto these dimensions 

(factorization). In any case, it needs to be remembered, although, that virtually all algorithms 

will find differences within the data at hand, even in the absence of natural subtypes or 

dimensions. This again highlights the need for assessing generalization in new data (70), as 

incidental patterns are unlikely to extend to new data whereas true subtypes should also remain 

discernable.  

The probably best-studied application for these methods is schizophrenia, where both 

factorization and clustering methods have a long tradition (Figure 2c). Most of this literature 

converges on a distinction between positive-psychotic symptoms and negative-cognitive 

affections, a differentiation that may be found both in terms of continuous dimensions of 

psychopathology (71,72) as well as clustering (15,73-77). However, there are also reports that 

indicate alternative modes of variation, such as subtypes differing by structural covariance 

features of subcortical regions, posterior orbitofrontal, superior temporal and occipital gyri as 
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well as anxious-depressed symptoms (78). This work resonates with factor models of 

schizophrenia psychopathology indicating more than two dimensions (15,79), raising the 

question of whether the positive vs negative distinction may be most salient but incomplete 

(80,81). Subtyping has likewise received substantial attention in major depression, particularly 

through the seminal study by Drysdale et al. (71), which proposed four “biotypes” based on 

rsFC patterns, symptom dimensions (Figure 2D) and differential responses to transcranial 

magnetic stimulation. A follow-up evaluation, however, casts doubts over this four-biotype 

differentiation (82), and other studies using similar albeit smaller samples proposed two (83-85) 

or three (86) subtypes.  

More work is certainly needed to identify robust subtypes within diagnostic categories 

and characterize their clinical relevance such as differences in prognosis or therapy response. 

However, the probably even bigger challenge is to apply the approaches mentioned here to 

heterogeneous samples, i.e., across diagnoses. As outlined, traditional diagnostic boundaries 

are sometimes ambiguous. Overlap between diagnoses in terms of clinical and neurobiological 

features thus prompted transdiagnostic initiatives such as the National Institute of Mental 

Health’s “Research Domain Criteria” framework (87). In this context, data-driven approaches 

may offer a perspective for a re-definition of disease entities along biological categories. Some 

early work in this respect provides interesting leads. Clustering on a cohort of patients with 

major depression and BD based on cortical thickness measures revealed two new divisions that 

differ in the proportions of BD II and major depression diagnoses and positive family history 

of psychiatric disorders (48). When trying to separate a pool of patients diagnosed with 
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schizophrenia, BD or major depression by patterns of functional imbalance between frontal and 

posterior brain regions, only two divisions emerged (76). Patients may also be represented by 

transdiagnostic dimensions of neurobiology in relation to low-rank psychopathological 

components through sub-space learning methods such as CCA. A recent study jointly analyzed 

healthy individuals and individuals with BD, ADHD, schizophrenia and schizoaffective 

disorder and identified three psychopathological dimensions related to dissociable functional 

connectivity signatures (88). Similarly, dissociable functional connectivity signatures for 

dimensions of psychopathology have been reported in an adolescent cohort (89), highlighting 

that connectivity patterns may relate to psychopathology in a specific yet 

diagnosis-overarching manner. An extensive overview of the application and caveats of 

categorical vs. dimensional approaches as well as single-view vs. multi-view approaches can 

be found in a recent review (90). Systematic overviews of subtyping ADHD and ASD, 

including a hybrid dimensional subtyping approach to allow each patient to associate with one 

or more categories to varying degrees (91) (Figure 2E), as well as details in the re-division of 

schizophrenia-spectrum, ASD and BD cohorts (92-95) may be found in a special issue of 

Biological Psychiatry on the topic of “Convergence and Heterogeneity in Psychopathology” 

(https://www.biologicalpsychiatryjournal.com/issue/S0006-3223(19)X0013-X).     

Data-driven methods promise a high potential for a redefinition of psychiatric 

classification and ultimately care. However, they can only fulfill this of the ensuing patterns 

and are both robust and valid, which requires large samples and stringent validation in 

independent samples, as well as very careful handling of disease-immanent and practical 
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confounders (96). Semi-supervised approaches such as HYDRA maximize the distance 

between subtypes and control subjects in a cross-validated procedure while trying to account 

for covariates (97). HYDRA may hence overcome the issue of subtyping by non-relevant 

demographic and clinical diversity (98,76). Likewise, hybrid approaches provided by 

normative modeling (99-101) and functional random forest (102) have provided interesting 

hypotheses on ASD and schizophrenia spectrum heterogeneity (65,103,104). Once established, 

however, the critical question then pertains to the clinical utility of the ensuing categories 

relative to the traditional and well-tested heuristics manifested in today’s diagnostic labels.  

 

Limitations and Concerns 

Both the approaches outlined here and the more prevailing classification setup suffer from the 

“garbage-in, garbage-out” problem, a longstanding aphorism in computer science specifying 

unreliable outputs from flawed input data. These include but are likely not limited to the 

aspects summarized below: 

  

- Limits of phenotypical data 

Traditional rating forms may provide only coarse measures of behavior, encounter adherence 

issues and yield limited real-life validity. This has prompted research to improve individualized 

quantification of symptomatology and behaviors like the development of Extended Strengths 

and Weaknesses Assessment of Normal Behavior (E-SWAN). These may provide more 

reliable measures (105) to better characterize data-driven subtypes and help to maximize 
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predictive accuracy (106,107). A more recent focus is digital phenotyping leveraging web, 

social media and mobile monitoring devices to obtain rich phenotypes continuously, 

objectively and passively through large-scale data collection (108,109). Digital phenotypes are 

likely to be clinically relevant and indicative of psychiatric syndromes (110-112).  

 

-Biased image quality   

Neuroimaging data may be degraded by factors such as distortions, poor signal-to-noise ratios 

and (particularly) excessive within-scanner head motion (113,114). These introduce artifacts to 

neuroimaging features that may then drive predictive algorithms (115-118). This is particularly 

critical if image quality is correlated with disease burden, diagnoses and other outcomes of 

interest (119,116). Unfortunately, this seems to be the case, as patients and among them in 

particular those with psychotic and manic symptoms systematically trend to differ from healthy 

controls in within-scanner movement, providing a hard-to-overcome confound.  

 

-Missing data and state assessment    

Missing data are pervasive in large-scale data but in particular in clinical settings where data 

are usually not missing at random (120,121). For example, more severely ill patients may not 

be able to compete parts of the assessment fail data-quality control (116) leading to missing 

data that are unevenly distributed among groups. While a majority of current psychiatric 

machine learning studies aim to identify stable markers capturing trait effects in cross-sectional 

data, we would argue that state-related effects, in particular of acute illness vs remission or 
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chronic phases would be of greatest interest and promise for biomarker and/or therapeutic 

development (122,123). However, access to recovered patients living in their community 

setting as opposed to being inpatients in a university hospital, is often limited.  

 

-Overfitting and researcher solutions 

Flawed analytic procedures can accidentally or artificially occur due to heedless or intended 

analysis optimization, leading to overfitting (7,26,125). While setting aside parts of the data 

from the whole process as a “lock-box” could effectively mitigate this (124), fresh holdout 

datasets are not always attainable, tempting researchers to access the “lock-box” multiple times, 

which can be problematic (though see (126)). Ultimately, though, pre-registration (127,128) 

following clinical trial standards where the trained model is deposited with a third party (e.g., a 

clinical trial center) before a single test-dataset is acquired would be needed before real-life 

use.  

 

-Sample size and effect size issues 

Small samples often produce inflated effect sizes that are not replicable in independent datasets 

(129,130). Thus, it seems likely that thousands of subjects are needed to attain reliable 

associations (130) and sufficiently small cross-validation error bars (131,132). This will 

obviously pose challenges in clinical settings. Hence strategies such as meta-matching (133), 

which leverages very large cohort datasets to only require a more manageable number of 

clinical cases for fine-tuning, may represent a promising avenue.  
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-Considerations for clinical translation 

Which effect size or accuracy should be considered clinically useful remains to be discussed 

and is likely negotiated between the different stakeholders such as patients, practitioners and 

insurances. One critical aspect in this discussion and related legal and ethical considerations 

(134-136) is the lack of explainability in most machine-learning models (137-139). In this 

context, we note that this “black box” problem may moreover pose challenges to the 

fundamental idea of informed consent, if the treating physician cannot explain evidence for a 

clinical decision and the patient is hence forced into blind trust.    

 

SUMMARY AND CONCLUSIONS 

Here, we outlined emerging trends to leverage machine-learning for neurobiological and 

nosological insights. We reviewed and summarized these new approaches using 

machine-learning accuracies as dependent variables to inform biological features related to 

psychopathology, diagnosis, and nosology. We also pointed to multi-view machine-learning to 

combine data from different sources for bridging molecular and system-level information. 

Finally, we highlighted unsupervised and semi-supervised approaches to disentangle 

psychopathological-neurobiological relationships within a diagnostic group or from a 

transdiagnostic perspective. While we expect these approaches to gather more attention in the 

future, we also highlighted the caveats and pitfalls that need to be overcome before 

machine-learning may contribute to biomarkers, pathophysiological understanding and 

ultimately precision psychiatry.     
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Figure Legends:  

Figure 1 Visual summary of the “perspective in leveraging accuracies to inform the 

pathophysiological relevance of feature-sets in single- and multi-view fashions”. A) Selecting 

informative features via comparing their achievable accuracies (8,15) or based on the accuracy 

drops due to the exclusion of each feature from the model (16,21). Here the a priori sets of 

features are the connectome of a single network or a single parcel (i.e., region). Then a 

machine learning model can be built to assess the performance given each feature set 

individually. After each feature set is tested, sets of features with top performance can be 

selected; In Chen et al., (8), connectivity within socio-affective network was found to be the 

best predictor of the cognitive symptomatology in schizophrenia patients (panel a); In Chen et 

al., (15), the connectivity profiles of parcels seated in ventromedial frontal area were identified 

to best represent the neurobiological distinctions between the patients with schizophrenia 

dominated by negative or positive symptomatology (panel b). In Yan et al., (21), network 

components involving hippocampus, supplementary motor area, paracentral lobule, precentral, 

and insular regions were found to be the top discriminative features across major psychiatric 

disorders (panel c); B) Informative features obtained after pruning a broad feature set based on 

predictive power with all available features input to the algorithm. Here we differentiate two 

approaches: the wrapper and the embedded settings; C) Multi-view machine learning to select 

informative features from different views of data like genetic and biochemical assays, 

complementing the biological insights provided by in vivo neuroimaging; D) Post-hoc 

integration of machine learning derived neuroimaging features with data from other biological 

sources through spatial correlation analysis. Here we show prior studies to integrate MRI 

derived features (network importance [8] and straital functional connectome [34]) with the 

distribution pattern of multiple neurotransmitter-receptors from multi-tracer PET maps as well 

as the gene expression patterns from the Allen human brain atlas (34) to reveal the associated 

molecular substrates of schizophrenia; E) Overview of the pathophysiological insights 

according to the new perspectives as informed by previous MRI-based machine learning 

studies in schizophrenia patients and complemented by those molecular and genetic features 

selected from multi-view classification experiments and multi-scale integration analytics. 

Integrant figures partly taken or adapted from Figure 4 in (15) with permission under 

CC-BY-NC-ND, from Figures 1,2,4 in (8) under CC-BY license, from Figure 3 in (21) under 

the Copyright Clearance Center's RightsLink (sso.copyright.com) license (NO. 

5340820701746), from Figure 1 in (52) under RightsLink license (NO. 5340821139538), from 

Figure 1 in (34) under RightsLink license (NO. 5340830193233). 

Abbreviations: ACC, accuracy; Sub, subject; PET, positron emission tomography.  
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Figure 2 Summary of the perspectives in utilizing accuracies from differential classification to 

inform nosological relationship and to disentangle heterogeneous disorders through 

semi-supervised and unsupervised approaches. A) Overview of prior machine learning studies 

for differential diagnosis; Patients with major depression and schizophrenia diagnoses would 

likely be more differentiable than major depression versus bipolar disorder and schizophrenia 

versus bipolar disorder diagnoses at the neurobiological level (22,46-48). Comparing to other 

major psychiatric disorders, patients with bipolar disorder present more closely related the 

striatal dysfunction patterns with schizophrenia patients as indicated by testing the binary 

support vector machine classifier in independent cohorts (34); B) Comparatively, within 

diagnosis classification of clinical subtypes demonstrated much higher accuracies as indicated 

by two studies focused on PTSD (67) and ADHD (23); C) Most of previous subtyping work 

employed various hard-clustering methods which resulted in each patient to be part of one 

group as illustrated in panel (a); Panel (b) in turn applied fuzz-clustering algorithms for a soft 

separation of schizophrenia patients based on their expressive patterns along four data-driven 

psychopathological dimensions. Here each patient allows for shared cluster-memberships, and 

thus patients with ambiguous cluster-assignments could be identified and removed to form 

more compact, and hence core subgroups of a patient cohort (15); In panel (c), we summarized 

the definitions of schizophrenia two-subtype differentiations in recent studies as depicted in 

different colors (dark blue: Chand et al., [76]; red: Chen et al., [15]; purple: Liu et al., [78]; 

green: Rahaman et al., [75]; orange: Sun et al., [77] age and gender are comparable between 

two-subgroup differentiations); D) Describing the structure of disorders via continuous 

dimensions: in panel (d), we show a conceptual schematic for phenotypic data factorization to 

derive psychopathological dimensions; in panel (e), we show an example from Drysdale et al., 

(52) to depict the bidirectional compression approach of CCA which searches for a linear 

combination of symptoms to maximize its correlation with neural components; E) The use of 

Bayesian models for deriving dimensional subtypes of ASD participants. In particular, the 

model allows for each subject to express one or more patterns (i.e., factors), and each factor is 

formed by distinct functional connectivity patterns (91). Integrant figures partly taken or 

adapted from Figure 3 in (15) and Figures 1&2 in (91) with permission under CC-BY-NC-ND, 

from Figure 1 in (21) under the Copyright Clearance Center's RightsLink (sso.copyright.com) 

license (NO. 5340820701746), from Figure 1 in (52) under RightsLink license (NO. 

5340821139538), from Figure 3 and Extended Data Figure 6 in (34) under RightsLink license 

(NO. 5340830193233). 

Abbreviations: ASD, autism spectrum disorder; PTSD, post-traumatic stress disorder; TDC, 

typical developing control; HC, healthy control; ADHD, attention deficit hyperactivity disorder; 

CCA: canonical correlation analysis. Pr(Factor l Participant), the probability of a participate 

associates with each of the factors; E(RSFC patterns l Factor), the expectation of resting-state 

functional connectivity associates specifically with a factor.    
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