Hauptseite > Workflowsammlungen > Publikationsgebühren > Gell-Mann–Low Criticality in Neural Networks > print |
001 | 911044 | ||
005 | 20240610121220.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevLett.128.168301 |2 doi |
024 | 7 | _ | |a 0031-9007 |2 ISSN |
024 | 7 | _ | |a 1079-7114 |2 ISSN |
024 | 7 | _ | |a 1092-0145 |2 ISSN |
024 | 7 | _ | |a 2128/32544 |2 Handle |
024 | 7 | _ | |a 35522522 |2 pmid |
024 | 7 | _ | |a WOS:000804565600003 |2 WOS |
037 | _ | _ | |a FZJ-2022-04370 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Tiberi, Lorenzo |0 P:(DE-Juel1)177789 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Gell-Mann–Low Criticality in Neural Networks |
260 | _ | _ | |a College Park, Md. |c 2022 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1690814377_13444 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Criticality is deeply related to optimal computational capacity. The lack of a renormalized theory of critical brain dynamics, however, so far limits insights into this form of biological information processing to mean-field results. These methods neglect a key feature of critical systems: the interaction between degrees of freedom across all length scales, required for complex nonlinear computation. We present a renormalized theory of a prototypical neural field theory, the stochastic Wilson-Cowan equation. We compute the flow of couplings, which parametrize interactions on increasing length scales. Despite similarities with the Kardar-Parisi-Zhang model, the theory is of a Gell-Mann–Low type, the archetypal form of a renormalizable quantum field theory. Here, nonlinear couplings vanish, flowing towards the Gaussian fixed point, but logarithmically slowly, thus remaining effective on most scales. We show this critical structure of interactions to implement a desirable trade-off between linearity, optimal for information storage, and nonlinearity, required for computation. |
536 | _ | _ | |a 5231 - Neuroscientific Foundations (POF4-523) |0 G:(DE-HGF)POF4-5231 |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539) |0 G:(EU-Grant)945539 |c 945539 |f H2020-SGA-FETFLAG-HBP-2019 |x 1 |
536 | _ | _ | |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A) |0 G:(DE-Juel-1)BMBF-01IS19077A |c BMBF-01IS19077A |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Stapmanns, Jonas |0 P:(DE-Juel1)171475 |b 1 |
700 | 1 | _ | |a Kühn, Tobias |0 P:(DE-Juel1)164473 |b 2 |
700 | 1 | _ | |a Luu, Thomas |0 P:(DE-Juel1)159481 |b 3 |
700 | 1 | _ | |a Dahmen, David |0 P:(DE-Juel1)156459 |b 4 |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 5 |
773 | _ | _ | |a 10.1103/PhysRevLett.128.168301 |g Vol. 128, no. 16, p. 168301 |0 PERI:(DE-600)1472655-5 |n 16 |p 168301 |t Physical review letters |v 128 |y 2022 |x 0031-9007 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/911044/files/Invoice_INV_22_MAR_008032.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/911044/files/PhysRevLett.128.168301.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:911044 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177789 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171475 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)159481 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)156459 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)144806 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5231 |x 0 |
914 | 1 | _ | |y 2022 |
915 | p | c | |a APC keys set |0 PC:(DE-HGF)0000 |2 APC |
915 | p | c | |a Local Funding |0 PC:(DE-HGF)0001 |2 APC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2021-02-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2021-02-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2021-02-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-02-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0571 |2 StatID |b SCOAP3 sponsored Journal |d 2021-02-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV LETT : 2019 |d 2021-02-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-02-02 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b PHYS REV LETT : 2019 |d 2021-02-02 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2021-02-02 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-02-02 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 2 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-4-20090406 |k IAS-4 |l Theorie der Starken Wechselwirkung |x 3 |
920 | 1 | _ | |0 I:(DE-Juel1)IKP-3-20111104 |k IKP-3 |l Theorie der starken Wechselwirkung |x 4 |
980 | 1 | _ | |a APC |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IKP-3-20111104 |
980 | _ | _ | |a APC |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|