000911048 001__ 911048
000911048 005__ 20230228121552.0
000911048 0247_ $$2doi$$a10.1093/cercor/bhac212
000911048 0247_ $$2ISSN$$a1047-3211
000911048 0247_ $$2ISSN$$a1460-2199
000911048 0247_ $$2pmid$$a35732315
000911048 0247_ $$2WOS$$aWOS:000814363100001
000911048 037__ $$aFZJ-2022-04374
000911048 082__ $$a610
000911048 1001_ $$0P:(DE-Juel1)131704$$aRollenhagen, Astrid$$b0
000911048 245__ $$aLayer-specific distribution and expression pattern of AMPA- and NMDA-type glutamate receptors in the barrel field of the adult rat somatosensory cortex: a quantitative electron microscopic analysis
000911048 260__ $$aOxford$$bOxford Univ. Press$$c2022
000911048 3367_ $$2DRIVER$$aarticle
000911048 3367_ $$2DataCite$$aOutput Types/Journal article
000911048 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676370192_30720
000911048 3367_ $$2BibTeX$$aARTICLE
000911048 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911048 3367_ $$00$$2EndNote$$aJournal Article
000911048 520__ $$aAMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptors are driving forces for synaptic transmission and plasticity at neocortical synapses. However, their distribution pattern in the adult rat neocortex is largely unknown and was quantified using freeze fracture replication combined with postimmunogold-labeling. Both receptors were co-localized at layer (L)4 and L5 postsynaptic densities (PSDs). At L4 dendritic shaft and spine PSDs, the number of gold grains detecting AMPA was similar, whereas at L5 shaft PSDs AMPA-receptors outnumbered those on spine PSDs. Their number was significantly higher at L5 vs. L4 PSDs. At L4 and L5 dendritic shaft PSDs, the number of gold grains detecting GluN1 was ~2-fold higher than at spine PSDs. The number of gold grains detecting the GluN1-subunit was higher for both shaft and spine PSDs in L5 vs. L4. Both receptors showed a large variability in L4 and L5. A high correlation between the number of gold grains and PSD size for both receptors and targets was observed. Both receptors were distributed over the entire PSD but showed a layer- and target-specific distribution pattern.The layer- and target-specific distribution of AMPA and GluN1 glutamate receptors partially contribute to the observed functional differences in synaptic transmission and plasticity in the neocortex.
000911048 536__ $$0G:(DE-HGF)POF4-5244$$a5244 - Information Processing in Neuronal Networks (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000911048 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911048 7001_ $$0P:(DE-HGF)0$$aAnstötz, Max$$b1
000911048 7001_ $$0P:(DE-HGF)0$$aZimmermann, Kerstin$$b2
000911048 7001_ $$0P:(DE-HGF)0$$aKasugai, Yu$$b3
000911048 7001_ $$0P:(DE-HGF)0$$aSätzler, Kurt$$b4
000911048 7001_ $$0P:(DE-HGF)0$$aMolnar, Elek$$b5
000911048 7001_ $$0P:(DE-HGF)0$$aFerraguti, Francesco$$b6
000911048 7001_ $$0P:(DE-Juel1)131696$$aLübke, Joachim H R$$b7$$eCorresponding author
000911048 773__ $$0PERI:(DE-600)1483485-6$$a10.1093/cercor/bhac212$$gp. bhac212$$pbhac212$$tCerebral cortex$$v2022$$x1047-3211$$y2022
000911048 8564_ $$uhttps://juser.fz-juelich.de/record/911048/files/Invoice_E15264642.pdf
000911048 8564_ $$uhttps://juser.fz-juelich.de/record/911048/files/bhac212.pdf$$yRestricted
000911048 8767_ $$8E15264642$$92022-05-12$$a1200190762$$d2023-02-17$$eHybrid-OA$$jZahlung erfolgt
000911048 909CO $$ooai:juser.fz-juelich.de:911048$$popenCost$$pOpenAPC$$pVDB
000911048 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131704$$aForschungszentrum Jülich$$b0$$kFZJ
000911048 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000911048 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000911048 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich$$b7$$kFZJ
000911048 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5244$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000911048 9141_ $$y2022
000911048 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-26$$wger
000911048 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCEREB CORTEX : 2019$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-26
000911048 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCEREB CORTEX : 2019$$d2021-01-26
000911048 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000911048 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911048 920__ $$lyes
000911048 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x0
000911048 980__ $$ajournal
000911048 980__ $$aVDB
000911048 980__ $$aI:(DE-Juel1)INM-10-20170113
000911048 980__ $$aUNRESTRICTED
000911048 980__ $$aAPC