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Mitigating the Hubbard sign problem with complex-valued neural networks
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Monte Carlo simulations away from half filling suffer from a sign problem that can be reduced by deforming
the contour of integration. Such a transformation, which induces a Jacobian determinant in the Boltzmann
weight, can be implemented using neural networks. This additional determinant cost for a generic neural network
scales cubically with the volume, preventing large-scale simulations. We implement an architecture, based on
complex-valued affine coupling layers, which reduces this to linear scaling. We demonstrate the efficacy of this
method by successfully applying it to systems of different size, the largest of which is intractable by other Monte
Carlo methods due to its severe sign problem.
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I. INTRODUCTION

The computational sign problem encumbers successful im-
portance sampling from complex-valued distributions with
Markov chain Monte Carlo algorithms such as hybrid Monte
Carlo (HMC). Sampling from the configuration space of a
wide variety of interesting physical systems suffers such a dif-
ficulty, ranging from lattice quantum chromodynamics (QCD)
at finite baryon chemical potential and doped condensed
matter systems in equilibrium to the real-time evolution of
quantum systems.

By deforming the real manifold of integration for a path
integral of interest into complex variables, one may reduce the
sign problem substantially [1–4]. In the last few years, new
formal developments have inspired investigation into leverag-
ing Lefschetz thimbles [5–11]—high-dimensional analogs of
contours of steepest descent which can be located by holo-
morphic flow. In Ref. [6], for example, fluctuations about the
saddle point of each thimble were sampled to simulate the
(0 + 1)-dimensional Thirring model, something much akin to
the method of steepest descent. In practice the determination
of the precise location of each thimble’s saddle point, or
critical point, as well as the relevant sampling “direction”
about these points, is numerically costly and prohibitive. An
alternative method is to train neural networks to learn the
map from some starting manifold to any beneficial manifold,
including one that approximates the thimbles that contribute
to the integral [12–14].

In our previous work [14] we were limited by the com-
putational cost of incorporating the Jacobian determinant of
this map into our importance sampling. In this paper we lever-
age complex-valued neural networks built of affine coupling

layers to reduce the scaling of the Jacobian determinant cost.
We focus on the Hubbard model on a honeycomb lattice away
from half filling and compare methods by computing single-
particle correlation functions.

This paper is organized in the following way. In Sec. II, a
brief recap of the Hubbard model and basic notation is given.
After that, some prior methods to alleviate or remove the sign
problem and usage within HMC are discussed. In Sec. III, we
describe our neural network architecture. In Sec. IV, we show
a numerical test of the network on three systems where we can
exactly diagonalize the Hamiltonian, and one larger system
beyond our ability to exactly diagonalize.

II. FORMALISM

The Hubbard model [15] describes a fixed spatial lattice X
on which particles can move and interact. In the particle-hole
basis it is described by Hamiltonian

H[K,V, μ] = −
∑

x,y∈X

(p†
xKxy py − h†

xKxyhy)

+ 1

2

∑
x,y∈X

ρxV
xyρy + μ

∑
x∈X

ρx, (1)

where the amplitudes in K encode the hopping of fermionic
particles p and holes h, the potential V describes the interac-
tions between charges

ρx = p†
x px − h†

xhx, (2)

and the chemical potential μ incentivizes charge. By adjusting
K and V this model can describe a wide variety of physical
systems. We restrict our attention to the case where K encodes
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(a) 2 Sites (b) 4 Sites (c) 8 Sites

(d) 18 Sites (boundary suppressed)

FIG. 1. (a)–(d) Graphical representation of the arrangement of
ions considered in the numerical investigation. Each node corre-
sponds to an ion, while each edge indicates an allowed particle or
hole hopping. The dashed lines represent the periodic boundary.

a honeycomb structure with nearest-neighbor hopping and the
interaction V is local,

K = κδ〈xy〉, V = Uδxy; (3)

the bipartiteness of the honeycomb permits a signed sublattice
transformation that flips the sign of the hopping of holes. As
we are focusing on algorithmic issues we focus on only the
four systems displayed in Fig. 1. These—the 2-, 4-, 8-, and
18-site models—are examples of the honeycomb lattice with
periodic boundary conditions.

Our aim is to compute observables O according to the
thermal trace

〈O〉 = 1

Z Tr[Oe−βH ], (4)

where the partition function Z is the trace without the ob-
servable and β is the inverse temperature, the Euclidean time
extent. Trotterizing into Nt time slices, inserting Grassman-
nian resolutions of the identity, and linearizing the interaction
via the Hubbard-Stratonovich transformation [16] leads to the
action

S[� | K,V, μ] = − ln det M[� | K, μ] · M[−�| − K,−μ]

+ 1

2

∑
t

∑
x,y∈X

�tx(δV −1)xy�ty, (5)

where � ∈ R|�| is an auxiliary field on the space-time lattice
� = [0, Nt − 1] ⊗ X and δ = β/Nt . We use the exponential
discretization [17] for the fermion matrices

M[� | K, μ]x′t ′;xt = δx′xδt ′t − (eδ(K+μ) )x′xe+i�xtBt ′δt ′(t+1),

(6)

where B encodes the antiperiodic boundary conditions in
time. On a bipartite lattice we may replace the −K in the
holes’ fermion matrix with +K ; then when μ = 0, the deter-
minant may be made manifestly positive semidefinite. When
μ is finite, S is complex; a great deal of recent effort has been
made in the computational physics community to understand
this case [18–21].

The transformation of the thermal average (4) leads to the
path integral

〈O〉 = 1

Z

∫
D� e−βS[�]O[�] ≡

∫
D� pS[�]O[�], (7)

where the partition function Z is the integral without the
observable O. When the action is real, importance-sampling
methods draw Nconf configurations according to the Boltz-
mann distribution

pS[�] = 1

Z e−S[�] (8)

and estimate observables (7) by an unweighted average. Any
practical calculation samples only finitely many configura-
tions Nconf, and the resulting statistical uncertainties scale as
N−1/2

conf as long as the configurations are independent.
At finite μ a complex-valued action yields an oscillating

integrand, and pS (8) can no longer be interpreted as a standard
probability density, rendering a straightforward application of
importance sampling impossible.

To recover an importance-sampling algorithm, we can sep-
arate the real and imaginary parts of the action S = ReS +
i ImS and rewrite the partition function

Z =
∫
D� e−S =

∫
D� e−ReSe−i ImS ∝ 〈e−i ImS〉ReS ≡ �,

(9)
where the expectation value is with respect to the real part of
the action and we call � the statistical power. So, by sampling
according to pReS we can estimate

〈O〉 = 〈e−i ImSO〉ReS

〈e−i ImS〉ReS
= 1

�
〈e−i ImSO〉ReS. (10)

When the statistical power � (9) cannot be reliably distin-
guished from zero the sign problem is too strong, and the
whole procedure fails [6,14,22,23]. Reference [22] showed
that the effective number of configurations

Neff
conf = |�|2 · Nconf (11)

controls the scaling of statistical errors ∼(Neff
conf)

−1/2.
It is widely expected that the statistical power shrinks expo-

nentially with space-time volume β|X |. Because the power is
the ratio of the full and phase-quenched partition functions, it
should be exponential in a difference of free energies, which is
extensive in the space-time volume [24]. For small nonbipar-
tite examples we have previously confirmed the exponential
dependence on β [14].

A promising alternative to simple reweighting is to com-
plexify the domain of integration and transform φ ∈ MR =
R|�| to a manifold � ∈ M ⊂ C|�|. As long as M is in the
same homology class, the analog of the Cauchy integral theo-
rem ensures that the partition function is unchanged [2],

Z =
∫
M
D� e−S[�]. (12)

Parametrizing the manifold M by the real fields induces a
Jacobian determinant, yielding [6]

Z =
∫
MR

Dφ e−S[�(φ)]+ln det J[�(φ)], (13)

and observables are computed on the manifold O[�(φ)].
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A judicious choice of the manifold M can diminish or
completely remove the sign problem [2,25]. Even when sam-
pling according to pReSeff with an imperfect manifold with a
complex effective action

Seff[φ] = S[�(φ)] − ln det J[�(φ)], Ji j = ∂�i

∂φ j
, (14)

if the statistical power � (9) is sufficiently improved, we can
reweight (10) with the imaginary part ImSeff.

There are many strategies for picking target manifolds [26].
One choice is to try to approximate the Lefschetz thimbles—
high-dimensional manifolds analogous to contours of steepest
descent, which have constant imaginary action and therefore
have a much-reduced sign problem [25]. Each thimble con-
tains a critical point �c that satisfies

∂S[�]

∂�

∣∣∣∣
�=�c

= 0 (15)

and is therefore a fixed point of the holomorphic flow

d�(τ )

dτ
=

(
∂S[�(τ )]

∂�(τ )

)∗
(16)

as a function of the fictitious flow time τ and initial condition
�(0) = φ. We can trace trajectories under the flow using the
integrator

I±
τ [φ] ≡

∫ ±τ

0

(
∂S[�(τ f )]

∂�(τ f )

)∗
dτ f . (17)

A thimble is the set of complexified configurations that flow
to a critical point under downward flow I−

∞.
There may be many thimbles in C|�|, and only some might

contribute. The upward flow I+
∞ discovers these thimbles au-

tomatically. After enough flow time τ the integrator I+
τ drives

any �(0) either to a place on a thimble or to neverland—any
place where thimbles of different imaginary action meet and
therefore must have zero weight. When � starts on a valid
integration manifold, its image under I+

∞ is on a thimble that
contributes to the integral or is in neverland. For an approach-
able discussion and proof, see the recent review in Ref. [2].

Therefore we can try to evaluate the path integral (13)
on the manifold given by �(φ) = I+

∞[φ] for each φ on any
valid starting manifold M0, such as MR. Though this seems
to make sign-problem-free simulations possible, two issues
remain. While integrating the flow (17) is cheap, performing
molecular dynamics integration on the thimbles at first glance
involves the costly computation of the Hessian ∂�i∂� j S[�]
due to the appearance of the Jacobian determinant of the flow
in the effective action (14), though some ideas for quickly
estimating the Jacobian have been proposed [27] and recent
work [28] shows how to accelerate this for sparse, local
(bosonic) actions. The Jacobian determinant has to be evalu-
ated at any accept-reject step with computational cost scaling
as |�|3.

Second, because thimbles only touch at places of zero
weight, algorithms such as HMC [29] which use a smooth
update of the fields � would be encumbered by an ergodicity
problem. The severity of this issue is ameliorated in two ways.
As any practical integrator I+

τ necessarily approximates the
flow, the resulting integration manifold is only approximately

the union of contributing thimbles. Additionally, we do not
need to flow for very much time. Both of these mean that the
important configurations are smoothly connected, though the
imaginary part of the action is not perfectly piecewise con-
stant. In practice, picking a τ is a trade-off between reducing
the computational cost of the flow and an improvement of the
statistical power.

The cost of the flow and the associated Jacobian determi-
nant is such that it is beneficial to train a neural network to
learn the map I+

τ : M0 → M̃. In the next section we explain
our network’s architecture.

Of course, understanding neural networks as general func-
tion approximators yields an interpretation of any (numerical)
integrator as a network, though it is parameter-free and needs
no training—its layers, given by some discretization of the
flow equations (16), are exactly known. Just as we can pro-
duce training configurations closer to the thimbles with a
more precise integrator, by adding additional layers we may
train the network to reproduce the integrated flow more ac-
curately. So, one expects a trade-off between the nearness to
the thimbles (thinking of the number of layers as a proxy)
and the effort required to train. The algorithm we describe
is exact, even in the case where the network does not offer
an acceleration, since the network produces a manifold with
the correct homology class regardless of its fidelity to the
thimbles.

Because we can integrate on any manifold in the same
homology class as R|�|, it may be beneficial to find simple
manifolds that can improve the statistical power without the
computational cost of flowing [30,31]. One such manifold
is the tangent (hyper)plane � ∈ MT [2,6,14], a hyperplane
parallel to the real manifold offset by a constant imaginary
piece so that it intersects the critical-point image of the zero
configuration i�0

c = I+
∞(0)

�(φ) = φ + i�0
c (18)

for all φ ∈ MR. For many smaller systems this transforma-
tion already reduces the sign problem enough that reweighting
can be applied. However, in our larger examples the tangent
plane gives no appreciable statistical power. Nevertheless, we
can reduce the cost and potentially increase the potency of
flowing if we start from the tangent plane [14].

One obvious approach to constructing an HMC-like algo-
rithm is to attempt molecular dynamics on the target manifold
M̃ given by �̃: in our case, an approximation of the thim-
bles. However, remaining on the manifold is not so simple
[28,32–34].

In contrast, performing HMC on the tangent plane is sim-
ple: When integrating molecular dynamics trajectories, simply
neglect the imaginary part of the force. Because the real plane
suffers from a severe sign problem in the examples we study,
we use this tangent-plane HMC as a benchmark. In the re-
mainder of this paper we refer to it simply as “HMC” unless
clarification is needed.

For further improvement we do molecular dynamics on
the tangent plane MT and perform the Metropolis-Hastings
accept-reject step on the target manifold M̃ according to the
effective action (14). We track both the configuration on the
integration manifold M0 and its image on the target manifold
M̃ to avoid paying the computational cost of applying or
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inverting the transformation �̃ more than needed. Assuming
the numerical implementation of the map �̃ is invertible,
proof that this algorithm has detailed balance is provided in
Ref. [14]. One can use a reversible integrator or an invertible
neural network to satisfy this requirement.

III. MACHINE-LEARNING METHOD

To accelerate the transformation to the target manifold M̃,
reducing computational complexity, it is possible to define
a neural network trained to approximate the integrator (17)
NN ≈ I+

τ .
One approach is to learn the imaginary part of any config-

uration on the target manifold M̃ given its real part [12,14]

shift : M0 → M̃, � �→ � + iNN (Re�). (19)

This ansatz has two advantages. First, the ergodicity issue,
induced by potential trapping on individual thimbles, is re-
moved [12]. Second, the network can use the well-established
methods of real-valued neural networks. Computational costs
due to flowing are reduced as the application of the neu-
ral network is much cheaper then any numerical integration.
However, a major disadvantage is the computational effort and
severe volume scaling of the Jacobian determinant [14].

In this paper we use complex-valued neural networks—
networks with complex parameters—to instead learn the map
from the integration manifold M0 to the target manifold M̃,

�̃ = NN (φ) ≈ I+
τ (φ). (20)

This approach enjoys a significant advantage over the shift
network (19): Given the right network architecture, the Jaco-
bian may be evaluated very quickly. Below we will explain
our use of affine coupling layers to reduce the scaling of the
Jacobian determinant from a general cubic scaling down to a
linear scaling in the volume |�|.

For a recent overview of complex-valued networks, see
Ref. [35]. Typical automatic differentiation algorithms can be
applied to complex-valued neural networks in a manner sim-
ilar to that in which real-valued ones are applied [36–38] by
switching the differentiation rule to Wirtinger derivatives [36]

∂ f (z)

∂z
= 1

2

(
∂ f (z)

∂ Rez
− i

∂ f (z)

∂ Imz

)
,

∂ f (z)

∂z∗ = 1

2

(
∂ f (z)

∂ Rez
+ i

∂ f (z)

∂ Imz

)
. (21)

The Wirtinger derivatives have the advantage that they co-
incide with complex derivatives for holomorphic functions
while also extending to nonholomorphic ones. This gener-
alization is required for two reasons. First, loss functions
typically are not holomorphic and are not differentiable in
the complex sense. Second, Liouville’s theorem, stating that
bounded entire functions are constant, reduces the usability of
any complex-valued neural network if only holomorphic com-
ponents can be used. As automatic differentiation is possible
through backpropagation using Wirtinger derivatives, these
restrictions can be overcome, and a neural network NN :
Cm → Cn with complex-valued weights can be defined [35].
We want to emphasize that a nonholomorphic network can
approximate the thimbles even though their definition is

manifestly holomorphic. This can be understood by utilizing
the universal approximation theorem [39] and realizing that
the change of variable requires an embedding which is at least
twice differentiable in the Wirtinger sense. It is expected that
such networks have an improved expressivity compared with
real-valued networks of twice the size—mimicking the real
and imaginary parts—as complex networks do not have to
learn complex arithmetic [35].

Special care has to be taken when evaluating the Jacobian
induced by the parametrization of M̃. The Jacobian in the
effective action (14) is defined by the derivative of the trans-
formation according to its real parameters—a derivative in the
real sense. When applying a nonholomorphic neural network
to parametrize the manifold, the Wirtinger derivatives force us
to reexpress the derivative in the real sense by combining the
two equations of (21) and the transformation on the tangent
plane (18)

Ji j ≡ ∂NN
(
φ + i�0

c

)
i

∂φ j
= ∂NN (�)i

∂� j
+ ∂NN (�)i

∂�∗
j

. (22)

To identify an architecture with an efficiently computable
Jacobian determinant, split the network into L constituent
layers:

�0(φ) = φ + i�0
c,

��>0(φ) = NN�(��−1(φ))

= (NN� ◦ NN�−1 ◦ · · · ◦ NN1)(φ),

�̃(φ) = �L(φ) = NNL(φ) ≡ NN (φ). (23)

The Jacobian determinant of the neural network [40] is then
given as the product of the Jacobian determinants of each layer

det J =
L∏

�=1

det JNN�
. (24)

Consequently, we focus on layers with computationally sim-
ple Jacobian determinants. Coupling layers

NN�(�) =
{

c�[�A, �B] A� components
�B B� components (25)

fulfill this requirement [41,42]. Here, A and B are layer-
specific partitions of the input vector � of equal cardinality
1
2 |�|, and �A,B are the components of the input belonging to
the indicated partition. If the coupling layer c�[�A,�B] acts in
an elementwise manner and is holomorphic in the components
�A

∂c�[�A,�B]

∂�∗
A

= 0, (26)

the Jacobian determinant of each layer is given by

det JNN�
(�) =

|A|−1∏
i=0

∂c�[�A,�B]

∂ (�A)i
. (27)

Furthermore, using an affine coupling [41]

c�[�A,�B] = em�(�B ) � �A + a�(�B), (28)

with arbitrary differentiable functions m�, a� : C |�|/2 → C |�|/2

acting on the B indices of the input configuration �, yields a
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Φ

ΦA

ΦB

cl (ΦA,ΦB)

ΦB

Φ̃split

copy

merge

FIG. 2. Pictorial representation of one coupling layer (25). First
the input configuration � is split into two partitions, �A and �B. The
corresponding A components are then changed according to the pre-
scribed coupling cl (�A, �B ), while the B components are untouched.
We utilize an affine transformation (28) for the coupling cl . The
resulting output vector �̃ is then constructed from the transformed
A components and unchanged B components.

computationally cheap (log) Jacobian determinant

ln det JNN (φ) =
L∑

�=1

|A|−1∑
i=0

m�(��−1(φ)B)i. (29)

The expressivity of the neural network is controlled by the
trainable parameters in the coupling functions m�, a�. If f
denotes an affine transformation

f (�) = ω · � + b (30)

and g denotes the nonlinear “softsign” function

g(z) = z

1 + |z| , (31)

we take the coupling functions to be

a�, m� = g ◦ f ◦ g ◦ f (32)

with independent complex weight matrices ω and bias vectors
b. The softsign function is nonholomorphic, requiring us to
consider the Jacobian in the Wirtinger sense (22). Due to the
structure of the Jacobian matrix, the nonzero nonholomorphic
components ∂�∗

B
c� do not contribute to the determinant (29).

A graphical representation of this architecture is displayed in
Fig. 2.

We add layers in pairs so that L is even. Each pair shares
their partitioning. In each pair the first layer modifies the A
partition (25) and the next modifies the B partition using the
same ansatz with independent weights and biases. Notice that
the Jacobian determinant can be implemented so that it is eval-
uated during the forward pass [41], which reduces the required
additional cost to only the sums of Eq. (29). Consequently, the
Jacobian determinant in the effective action (14) only adds a
computational complexity linear in the volume |�|.

The training setup was kept simple, allowing for further
improvements in the future. A standard L1 loss function
and the ADAM algorithm implemented in PYTORCH [43]
were used to train the network. We kept the ADAM-
specific hyperparameters—running average coefficients βi =
(0.9, 0.999), denominator shift ε = 1 × 10−8, and weight
decay w = 0—at the standard values. The training data com-
prised 10 000 (16 000 for the 18-sites problem) configurations
drawn from normal distributions φ ∼ N0,σ , with σ uniformly
sampled between

√
U/(1+16/Nt ) and

√
U [14], as input. The

“labels” consist of the corresponding flowed configurations
I+

τ (φ), where the integration is performed using an adap-
tive Runge-Kutta method of fourth order. A similar setup

is used for the validation and testing data but only for
2000 configurations each. To avoid learning features of the
thimbles irrelevant to the integral [6,10,14,23], only config-
urations that did not flow to neverland are included in the
training.

The network NN with two pairs of coupling layers was
initialized to the identity so that before training it reproduced
the tangent-plane configurations which were fed into it. We
experimented with learning I+

τ different flow times τ ∈ {1 ×
10−6, 1 × 10−5, 1 × 10−3, 1 × 10−2, 1 × 10−1}. We com-
puted both the statistical power and measured correlators
(as shown later in Fig. 4). If we flow too much, most
configurations flow to neverland, and training becomes ex-
pensive; if we flow too little, the statistical power hardly
improves. The results shown in the next section have a flow
time τ = 1 × 10−1.

Unfortunately picking a fixed flow time of this size was
not feasible for the 18-sites problem. Instead, we defined a
window of flow times τ ∈ [0, 0.1] on which the flow is per-
formed, as was originally done in Ref. [14]. In this manner,
fixed flow-time configurations which would have flowed to
neverland and thus have been rejected could still be used
if their configurations remained valid within the window of
flow times. It was found in Ref. [14] that this method greatly
decreased the cost of generating training data. In future work
we will continue to investigate more efficient ways of gener-
ating training data, and performing the training process itself,
including by sampling one training point from the steps along
a holomorphic flow to τ = ∞ according to the real part of the
step’s action.

IV. RESULTS

We simulate the Hubbard model on the honeycomb lattices
of 2, 4, 8, and 18 sites shown in Fig. 1, using configu-
rations obtained on the tangent plane and via our neural
network NN , at inverse temperature β = 4, Nt = 32 time
slices, on-site coupling U = 4, and chemical potential μ =
3. To compare the machine-learning-enhanced (ML) HMC
with other implementations such as the real-plane (standard)
HMC with molecular dynamics on MR and the tangent-plane
HMC on MT , we consider the statistical power �. A suit-
able algorithm will have |�| close to 1, whereas low values
indicate a less suitable algorithm, since considerably more
statistics would be required (11). Figure 3 shows estimates
of |�| with different numbers of configurations for the three
mentioned HMC variants. The ML HMC is shown in blue,
the tangent-plane HMC is shown in orange, and the real-plane
HMC is shown in red. The ML HMC outperforms the two
other algorithms in every case. Moreover, in the case of eight
sites, enormous statistics are required to even get a reasonable
estimate of the statistical power for the real- and tangent-plane
HMCs, while the power of the ML HMC stabilizes with far
fewer samples. For 18 sites it was not feasible to simulate with
the real-plane HMC, and thus it is not shown here. We can see
that the tangent-plane HMC does not get any reliable value for
the statistical power while the ML HMC converges relatively
fast.

We show the efficacy of our method by computing
Euclidean-time correlators for a single particle or single hole
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FIG. 3. The statistical power |�| = |〈e−i ImS〉| is plotted against the number of configurations. Three different algorithms are compared: the
real-plane (standard) HMC (orange), the tangent-plane HMC (red), and the ML HMC (blue). For 18 sites the real plane was totally noisy, and
it is left out here. It can be seen that the ML HMC outperforms both real- and tangent-plane HMCs.

created at time 0 and site y and destroyed at time t and
site x.

Cp
xy(t ) = 〈p†

x(t )py(0)〉 = 〈
M[+�| + μ]−1

xt ;y0

〉
, (33)

Ch
xy(t ) = 〈h†

x (t )hy(0)〉 = 〈
M[−�| − μ]−1

xt ;y0

〉
. (34)

To improve our signal, we average on time slices in t ∈
[δ, β − δ],

Cxy(t ) = 1
2

(
Cp

xy(t ) + Ch∗
xy (β − t )

)
; (35)

the addends are equal by symmetry even when μ �= 0. We
then project both spatial indices to the same momentum k to
construct Ck (t ) for each momentum allowed by the lattice, and
average correlators whose momenta are equal by rotational
symmetry.

The match of our correlators in Fig. 4 with the exact re-
sults demonstrates that our algorithm is sampling the correct
distribution. Each row of the figure corresponds to one of
the exactly diagonalizable system sizes, and each column
restricts the number of configurations Nconf used to estimate
the correlators. The red correlators are determined using a

tangent-plane HMC, and the blue ones are determined using
the ML HMC. Finally, the black dashed lines correspond to
the correlators obtained by an exact diagonalization proce-
dure. For the smaller examples the statistical errors of the
ML HMC are much smaller, especially with fewer samples,
as is expected from their respective statistical powers shown
in Fig. 3. The worst sign problem can be found in the
eight-site case. Here, the tangent-plane HMC fails even for
Nconf = 100 000 and the statistical uncertainty in the correla-
tors is essentially 100%. The ML HMC obtains a weak signal
at Nconf = 50 000 configurations and improves with greater
statistics.

Finally, we compute correlators for a system with 18
sites and the same parameters but with U = 3 which is not
tractable by exact diagonalization. As shown in the statistical
power plot in Fig. 3 this model has a severe sign problem
which could not be previously overcome. Again comparing
the tangent-plane HMC and ML HMC in Fig. 5, it can be
seen that the ML HMC outperforms the tangent-plane HMC
and with the 100 000 measurements quite a good signal is
obtained.
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FIG. 4. Momentum-projected correlation functions measured using tangent-plane HMC and ML HMC are shown in red and blue,
respectively. These correlators were calculated with an inverse temperature β = 4, Nt = 32 time slices, on-site coupling U = 4, and chemical
potential μ = 3. The dashed black lines were determined by exact diagonalization. Each row corresponds to a different number of ions (as in
Fig. 1) increasing from top to bottom. Each column uses a different number of configurations Nconf to estimate the correlators, increasing from
left to right. Comparing the statistical power per Nconf from Fig. 3 suggests that we use Nconf = 1000, 10 000, 100 000 for two and four sites
as the uncertainty strongly differs. However, for eight sites there is not much difference in the uncertainty of |�| between Nconf = 1000 and
10 000; we show Nconf = 1000, 50 000, 100 000 instead. The ML HMC’s improved statistical power shown in Fig. 3 is reflected in the accuracy
and uncertainty of these correlators. The sign problem of the two-site and four-site models is mild enough such that the tangent plane gives
fairly good results, but the ML HMC gives more precise results with fewer configurations. For eight sites the tangent-plane HMC completely
fails even at Nconf = 100 000, while the ML HMC succeeds.

In all cases we measured on every tenth configuration
such that no appreciable autocorrelation is found. All these
simulations indicate that the neural network improves the sta-
tistical power and uncertainty in observables quite drastically
even when using a simple architecture. We anticipate further
improvements of our network by incorporating additional lay-
ers or incorporating knowledge of the problem’s symmetries
using equivariant layers [44–46].

The main advantage of our complex architecture lies in
the efficiency of the Jacobian determinant (29) calculation.

The form of the determinant (29) shows that it can be com-
puted during the forward pass, reusing intermediate results
from the application of the network, and is linear in the
volume |�|αNN

αNN = 1. (36)

The calculation of the determinant using a shift layer [12,14]
with the implementation of PYTORCH [43] [through
lower-upper (LU) decomposition] scales with the third
power of the volume |�|αshift , i.e., αshift = 3. Measurements

125139-7



MARCEL RODEKAMP et al. PHYSICAL REVIEW B 106, 125139 (2022)

FIG. 5. The single-particle correlators are displayed for the 18-site model at an inverse temperature β = 4, with Nt = 32 the number of time
slices and with U = 3 and μ = 3. The correlators have been measured with Nconf = 100 000 configurations. Again, the tangent-plane HMC
(red) does not provide any insight, while the ML HMC resolves the correlators well. Assuming similarity to the smaller U = 4 examples, the
ML HMC clearly determines the low-energy correlator, while the tangent-plane HMC fails to find it at all.

of the execution times of the determinant for the two neural
network architectures are compared in Fig. 6. The left
panel shows the execution time per layer of ln det J for
different artificial system volumes. These volumes define

the size of the configuration � which is randomly sampled
and then passed to the networks. On the log-log plot the
linear behavior in the region |�| > 1 × 107—for αNN —and
|�| > 7 × 102—for αshift—determines the algorithms’

FIG. 6. The left panel shows the scaling behavior per layer of ln det J for the previously used shift neural network, �̃ = � + iNN (�)
(red), and for the complex-valued paired affine coupling neural network, �̃ = NN (�) (blue). In the right panel, we show the speedup for the
different system volumes. Theoretically, the Jacobian determinant scaling of the shift network is expected to be cubic in the system volume,
while the NN is expected to scale linearly, resulting in a quadratic speedup. The solid lines, in the left panel, represent log-log fits whose
slopes determine the measured scaling orders. We find for the slopes of the shift layer (red) a value of 2.955(1) and for NN (blue) a value of
1.008(1), resulting in a scaling improvement of power 1.947(2). The timing measurements were performed on JURECA [47] using one AMD
EPYC CPU.
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scaling. A simple least-squares fit provides the scaling
exponents

αshift = 2.955(1), αNN = 1.008(1), (37)

confirming our expected scaling behavior. We then calculate
the speedup achieved with the complex over the shift net-
work architecture in the right panel of Fig. 6. The expected
quadratic speedup is confirmed by the benchmark result of

αshift − αNN = 1.947(2). (38)

V. CONCLUSIONS

Mitigating the sign problem induced by a complex action
is a major target of algorithmic development for simulat-
ing quantum-mechanical systems. The application of neural
networks approximating Lefschetz thimbles has shown great
promise in the past. We show that the supervised training
of a simple complex-valued neural network architecture—
paired affine coupling layers with complex weights and
biases—allows for the successful simulation of systems with
increasingly severe sign problems. Our ML HMC approach
reduces the sign problem sufficiently and enjoys a statistical
power much greater than vanilla real-plane or tangent-plane
HMC, as shown in Fig. 3, improving the reliability of the cor-
relator estimators in Fig. 4. We demonstrated the fidelity and
correctness of our method by simulating two-, four- and eight-
site models and comparing our results with those obtained
from direct diagonalization, obtaining excellent agreement.
We then applied our method to the 18-sites problem, where

direct diagonalization is not realizable. Our results here thus
represent predictions for this system in a regime where stan-
dard Monte Carlo methods are not possible due to the severity
of the sign problem.

Our results were made possible due to the favorable vol-
ume scaling of our method. Compared with previous methods,
we drastically reduced the computational cost of the Jacobian
determinant from a general cubic scaling down to linear in the
volume. This has been numerically tested and demonstrated
in Fig. 6. The computational complexity of our method is
therefore dominated by the application of the neural network
itself and can be further improved by using sparse methods,
convolutional layers, or other layer architectures. We are ac-
tively investigating such possibilities.
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