Neuropsychology Review (2023) 33:492-513
https://doi.org/10.1007/s11065-022-09552-5

REVIEW q

Check for
updates

A Systematic Review on Common and Distinct Neural Correlates
of Risk-taking in Substance-related and Non-substance Related
Addictions

Philippa Hiipen'2® . Ute Habel'® . Mikhail Votinov'3® . Joseph W. Kable*® - Lisa Wagels'-

Received: 25 June 2021/ Accepted: 24 May 2022 / Published online: 30 July 2022
© The Author(s) 2022

Abstract

Both substance-related as well as non-substance-related addictions may include recurrent engagement in risky actions despite
adverse outcomes. We here apply a unified approach and review task-based neuroimaging studies on substance-related
(SRASs) and non-substance related addictions (NSRASs) to examine commonalities and differences in neural correlates of
risk-taking in these two addiction types. To this end, we conducted a systematic review adhering to the PRISMA guidelines.
Two databases were searched with predefined search terms to identify neuroimaging studies on risk-taking tasks in individu-
als with addiction disorders. In total, 19 studies on SRAs (comprising a total of 648 individuals with SRAs) and 10 studies
on NSRAs (comprising a total of 187 individuals with NSRAs) were included. Risk-related brain activation in SRAs and
NSRAs was summarized individually and subsequently compared to each other. Results suggest convergent altered risk-
related neural processes, including hyperactivity in the OFC and the striatum. As characteristic for both addiction types,
these brain regions may represent an underlying mechanism of suboptimal decision-making. In contrast, decreased DLPFC
activity may be specific to SRAs and decreased IFG activity could only be identified for NSRAs. The precuneus and posterior
cingulate show elevated activity in SRAs, while findings regarding these areas were mixed in NSRAs. Additional scarce
evidence suggests decreased ventral ACC activity and increased dorsal ACC activity in both addiction types. Associations
between identified activation patterns with drug use severity underpin the clinical relevance of these findings. However, this
exploratory evidence should be interpreted with caution and should be regarded as preliminary. Future research is needed
to evaluate the findings gathered by this review.
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Addictive disorders are among the most common psycho-
pathologies with lifetime prevalence rates ranging from
around 1.2% for gambling disorder (American Psychiatric
Association, 2013) to 9.9% for drug use disorder (Grant
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et al., 2016) and 21.9% for alcohol use disorder (Grant
et al., 2015). Negative sequelae include considerable eco-
nomic burden on society (Collins et al., 2000) and a reduced
quality of life with elevated levels of mental and physical
health problems in affected individuals (Bizzarri et al., 2005;
Black et al., 2013). Addictive disorders encompass a broad
spectrum of maladaptive behaviors, including substance-
related addictions (SRAs) such as drug dependence and non-
substance-related addictions (NSRAs) such as pathological
gambling. A growing body of research shows that SRAs and
NSRAs present similarities in behavioral as well as in bio-
logical alterations. Both, SRAs and NSRAs manifest similar
core symptoms, such as withdrawal, tolerance, craving, and
impaired behavioral control (Olsen, 2011; Potenza, 2008).
Moreover, both addiction types are characterized by an ina-
bility to resist impulses towards rewarding stimuli despite
potential adverse consequences (Potenza, 2006; West, 2001).
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The question as to why someone would repeatedly decide
to engage in risky actions with possible adverse outcomes
and despite significant negative consequences is puzzling.
Greater insight into neural mechanisms of altered risk-taking
behavior could contribute to a better understanding of mala-
daptive choice in addictive disorders.

Broadly, risk-taking is the tendency to choose an action
with the potential for a relatively large, either beneficial or
adverse outcome over an alternative that results in a com-
parably small, beneficial outcome. Thus, the individual has
to evaluate the rewarding and punishing consequences of
each option and their likelihood of occurring (Mellers et al.,
1997; Paulus et al., 2003). Research on risk-taking has a
long tradition and emerged predominantly from two fields.
In economics, risk seeking is commonly defined as the pref-
erence for choosing an action with a higher, as opposed to
lower, outcome variance holding the expected value con-
stant (Hertwig et al., 2019; Schonberg et al., 2011). The
outcome of such choices is probabilistic. In addition, the
probability distributions of each possible outcome may be
either known (decisions under risk) or unknown (decisions
under uncertainty; Knight, 1921). Decisions which entail
unknown probability distributions may best represent the
psychological conception of risk, namely, behaviors with
an uncertain potential for harmful outcomes for oneself
or others (e.g., reckless driving, engaging in unprotected
sex, free-climbing). Thus, in psychology, risky behavior is
more broadly conceptualized as the tendency to engage in
behaviors with potential detrimental consequences, but also
with potential personal benefits, in situations which do not
contain complete information about potential costs and ben-
efits. This behavior is often seen in individuals with certain
psychiatric disorders (e.g., Borderline Personality Disorder,
Bipolar Disorder, Attention-Deficit/Hyperactivity Disorder).
Addictive behaviors are also characterized by this kind of
naturalistic risk-taking behavior from a psychological per-
spective: affected individuals show addictive behaviors
despite potentially harmful, unknown consequences.

As a consequence of these different conceptualiza-
tions of risk-taking, different measurement traditions and
paradigms have emerged and are used in neuroscientific
studies investigating neural correlates of risk-taking and
associated constructs. Insights gained through these stud-
ies point to several brain regions and networks involved.
Early meta-analytic results identified several brain regions
to be involved in the complex evaluation of decision alter-
natives (Krain et al., 2006; Mohr et al., 2010), including
the dorsolateral prefrontal cortex (DLPFC), the ventrome-
dial prefrontal cortex (vmPFC), the orbitofrontal cortex
(OFC), the posterior parietal cortex (PPC), the anterior
cingulate cortex (ACC), as well as the insula. Specifically,
the vimPFC, the ventral striatum, and (in some cases) the
posterior cingulate cortex are thought to form the core

of the brain’s valuation system and to track the value of
choice options across a variety of different contexts (Bartra
etal., 2013; Lopez-Guzman et al., 2019). Activity in these
brain areas can be observed both during decision-making
and during outcome delivery (Bartra et al., 2013). In addi-
tion, activity in vmPFC and OFC is also associated with
more emotional aspects of decision-making, such as affec-
tive attribution of choice (Ernst & Paulus, 2005), and it has
also been shown to be involved in several other functions
related to decision-making such as flexible representa-
tion of stimulus-outcome associations or inhibitory con-
trol (Murray & Rudebeck, 2018; Stalnaker et al., 2015).
A more recent hypothesis proposes a unifying theory of
OFC function which may integrate the above mentioned
tasks, suggesting that the OFC may provide abstraction of
currently available information/ higher-order representa-
tions that enable inference of unobservable information
(Murray & Rudebeck, 2018; Stalnaker et al., 2015; Wilson
et al., 2014; Yu et al., 2020). That is, it may represent the
state of the world, all information that is relevant to the
current decision. Thus, the OFC may provide a cognitive
map of task/state space, a neural representation of stimuli,
actions and other sensory features that occur in associa-
tions with outcomes.

The anterior insula and the (dorsal/caudal) striatum seem
to be more related to emotional arousal or salience during
risk-taking (Bartra et al., 2013). In addition, anterior insula
activity codes individual risk perception (Christopoulos
et al., 2009; Fukunaga et al., 2018; Paulus et al., 2003;
Preuschoff et al., 2006). Another brain region that is com-
monly mentioned in the context of risk-taking is the DLPFC.
It has been argued that during decision-making, it represents
both cognitive and value-based information such as inte-
grating rule-outcome associations and that it is especially
activated during complex choices (Dixon & Christoff, 2014).
The influence of the DLPFC on risk-taking may be of par-
ticular relevance for addictions due to its role in self-control.

Activity in many of these regions has been shown to differ
in addiction. Moreover, research has already demonstrated
that affective mechanisms such as reward processing and
cognitive control (e.g., the inhibition of impulses) are altered
in both SRAs and NSRAs. Specifically, altered (anticipatory)
signaling in the amygdala and striatum seems to underlie
aberrant reward processing in addictive disorders (in NSRAs
as well as SRAs; Balodis & Potenza, 2015; Garcia-Garcia
et al., 2014; Luijten et al., 2017). During inhibitory control
tasks, individuals with addictive disorders show reduced
activity in the ACC as well as prefrontal regions, including
the DLPFC (Luijten et al., 2014). Since reward-processing
as well as inhibitory control constitute essential and integral
aspects of decision-making, it is likely that decision-making
processes are also altered among individuals with addictive
disorders (Balodis & Potenza, 2015; Hommer et al., 2011;
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Lawrence et al., 2009; Leyton & Vezina, 2013; Potenza
et al., 2013).

A meta-analytic review from 2013 identified alterations
in the ACC, OFC, DLPFC, striatum, insula, and the soma-
tosensory cortex during risk-related decisions in individuals
with SRAs (Gowin et al., 2013). Moreover, a sub-analysis
of a recent meta-analysis on functional brain networks of
different kinds of decision-making identified the thalamus,
the caudate, and the cingulate to show reduced brain activity
in SRAs (Poudel et al., 2020). It should be noted, however,
that this meta-analysis included many studies employing
paradigms which we do not consider in our review, such as
the stop-signal task, which is an index for motor response
inhibition rather than for decision making under risk or
uncertainty. Moreover, the current literature is lacking an
overview on risk-taking in individuals with NSRAs and
comparisons between different addiction types.

The core of this comparative review is, therefore, to
explore differences and similarities in neural correlates
of risk-related decisions between SRAs and NSRAs. In
NSRAs, phenotypic features and neural alterations are — in
contrast to SRAs — not confounded by pharmacological
effects of drugs, which cause additional neural changes
(Goldstein & Volkow, 2011). Specifically, the objectives of
this review are (1) to summarize neural correlates of risk-
related decision-making in SRAs and NSRAs separately, and
(2) to provide a preliminary investigation of commonalities
and differences in neural correlates of risk-taking decision-
making in individuals with SRAs and in individuals with
NSRAs.

Method

This review was not pre-registered and was conducted adher-
ing to Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Mohr et al., 2010). A
systematic literature search of the scientific databases Pub-
Med and Web of Science, including all available empirical
studies until January 2022, was conducted to find articles
on functional neuroimaging studies investigating risky and
uncertain decision-making in addictive disorders. Studies
fulfilling inclusion criteria were identified by one author
searching the databases after applying search terms, filters
and exclusion criteria (see Table 1). In addition, reference
lists of identified records were used to identify additional
studies. Duplicates were removed, and titles and abstracts
of remaining records were screened. In the present review,
we consider studies investigating decision-making where
outcome probabilities are tied to different choice options
(i.e., are not random) and are either known (i.e., decisions
under risk) or unknown (i.e., decisions under uncertainty)
to participants. Finally, decisions should have rewarding or

@ Springer

punishing consequences. We focused on statistical contrasts
between risky decisions versus safe decisions or control con-
ditions of the decision phase (in case where studies differ-
entiated between different task phases). We included studies
with a primary focus on whole-brain analyses (ROI analysis
may be conducted in addition). Please refer to Table 1 for
all inclusion criteria. For the ease of reading, we refer to
both decision-making under risk and decision-making under
uncertainty as risk-related decisions or risk-taking.

Results

A total of 847 studies were screened. After exclusion,
109 studies were assessed for eligibility. Finally, 29 stud-
ies examining neural correlates of risk-taking in addictive
disorders were included and reviewed. Results of the study
selection process are presented in Fig. 1. Included studies
employed a variety of prominent risk-taking paradigms and
five self-developed tasks (see Table S1 of the supplementary
online material for an overview and description of the dif-
ferent tasks). In all paradigms, positive trial outcomes were
associated with monetary wins or virtual points. Negative
trial outcomes were associated with either a deduction of
money/points or had no consequences. The risk contrasts
of the decision phase (focus of the current review) of the
imaging analyses aggregated over positive and negative trial
outcomes of the subsequent outcome phase.

Results of the present review are presented in two main
sections. The first section presents findings on SRAs, and
the second section presents findings on NSRAs which are
compared to those of SRAs. In order to provide context, for
each main section, we report findings on neural alterations
in these groups stratified by studies reporting behavioral dif-
ferences and studies which could not find any behavioral
differences regarding risk-taking in comparison with con-
trols. Each subsection is concluded by a brief summary of
findings. Figure 2 compares findings on SRAs with those
on NSRAs.

Substance-related Addictions

Our review identified 19 eligible functional imaging studies
which investigate risk-related decisions in SRAs compared
to controls. A total of 648 individuals participated across
all SRA studies. The number of included SRA individu-
als per study ranged from 11 to 75. Among the included
studies, four studies were identified which did not include a
healthy control group, but assessed the (longitudinal) rela-
tionship between clinical characteristics (e.g., symptom
severity) and altered neural correlates during risk-taking
(Blair et al., 2018; Forster et al., 2016, 2017; Gowin et al.,
2014a). Approximately half (k=7) of the reviewed studies
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Fig.1 PRISMA flow diagram
of study selection
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PRISMA 2009 Flow Diagram

Identification

1089 records identified through
database searching
(338 from PubMed
751 from Web of Science)

5 additional records identified
through other sources

[

]

Eligibility Screening

Included

examined risk-taking in individuals with stimulant addiction
(k=2 in cocaine addiction, k=3 in methamphetamine addic-
tion, and k=2 in stimulant addiction, not further specified).
Of the remaining studies, k=3 studies investigated canna-
bis addiction, k=2 studies investigated alcohol addiction
and k=35 studies did not report the exact addiction type or
included mixed samples. Table 2 provides an overview of
the study and sample characteristics of reviewed studies. Ten
of the 19 studies reported increased risk-taking in individu-
als with SRAs, whereas nine of the 19 studies did not find
any behavioral differences between individuals with SRAs
and controls.

DLPFC and Extending Regions
Across different tasks and decision-making domains,

activation within prefrontal areas, particularly within
the right DLPFC (middle frontal gyrus) was decreased

@ Springer
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847 records after duplicates removed

A 4

847 records screened 738 records excluded

A 4

A 4

109 full-text articles
assessed for eligibility »>

l

29 studies included in
qualitative synthesis

80 full-text articles
excluded

19 on substance-related
addictions
10 on non-substance
related addictions

in individuals with SRAs (k=6; Bolla et al., 2003; Bolla
et al., 2005; Burnette et al., 2020; Ersche et al., 2005;
Gilman et al., 2015; Kohno et al., 2014). Other prefrontal
areas which were reported to show decreased risk-related
brain activity in individuals with SRAs included the supe-
rior and medial frontal gyri (Bolla et al., 2003; Burnette
et al., 2020; Gilman et al., 2015). Among the six studies
reporting decreased risk-related DLPFC activity, only one
study found increased behavioral risk-taking in the SRA
group; the remaining studies did not find any behavioral
differences between SRAs and HCs. One study reported
increased middle frontal (DLPFC), and medial/superior
frontal activity in individuals with SRAs (Yamamoto et al.,
2014). Finally, a longitudinal study on SRA investigated
substance use outcomes for a duration of three months and
reported a positive correlation between substance use and
activation in the supplementary motor area on the BART
task (Forster et al., 2017).
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Fig.2 Altered risk-related brain A

activation patterns in indi-

viduals with a substance related

addictions and b non-substance

related addictions. Arrows ?
()

%a Precuneus
) 1

indicate relative increase (1) or
decrease (| ) in brain activation
compared to controls. ¢ shows
brain regions where substance
related addictions and non-
substance related addictions dif-
fer. Regions in brackets indicate
mixed or limited evidence (<3
studies reporting consistent d‘
alterations in this brain area) v

N

“(Precuneus)
]

L’a

Striatum

Precuneus

ACC

Three studies reported a trend toward riskier behavior in
individuals with SRAs on an uncertainty task (specifically,
an increased frequency of risky decisions after losses) and
also identified increased risk-related dorsal ACC activity
(k=3; Gowin et al., 2017, 2014b; Yamamoto et al., 2014).
Interestingly, the studies conducted by Gowin et al. revealed
that their control participants showed greater dorsal ACC
activity during safe relative to risky choices whereas their
SRAs groups either showed enhanced activity when they
chose risky options or showed no differential activity for
risky compared to safe choices. In addition, increased risk-
related dorsal ACC activity seems to be related to greater
symptom severity (Gowin et al., 2017). This finding is sup-
ported by a longitudinal study which tracked substance use
in an SRA sample throughout a 3-month period. Improved
substance use outcomes were related to a decreased risk-
related response in the dorsal ACC (extending to the
vmPFC; as well as in the putamen) at follow-up relative
to a baseline assessment (Forster et al., 2016). Conversely,
duration of use was negatively correlated with dorsal ACC
activity (Vaidya et al., 2012).

Conversely, the ventral ACC showed decreased risk-
related activity in the context of similar (Ersche et al., 2005)

as well as increased behavioral risk-taking (Fishbein et al.,
2005) in SRAs compared to HCs (k=2). Both studies used
the Cambridge Risk Task which measures decision-making
under risk.

Insula/IFG

In total, k=2 studies reported decreased risk-related brain
activity in the anterior insula under uncertainty. Specifically,
relapsed as opposed to abstinent individuals with SRAs
showed blunted risk-related activity in the anterior insula
(Gowin et al., 2014a). Furthermore, Fukunaga et al. (2013)
identified regions which showed a difference in brain acti-
vation associated with risky relative to safe decisions. They
further investigated regions showing such a difference and
found that individuals with SRAs showed lower differential
activity in the anterior insula that corresponded to greater
risk-taking behavior.

Conversely, risk-related activity in the insula/mid insula
was found to be increased in SRAs under uncertainty (k=2;
Gowin et al., 2014b; Yamamoto et al., 2014). Increased
activity in the mid insula correlated with the frequency of
risky choices after losses as well as with a longer substance
use history (Gowin et al., 2014b).
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OFC/vmPFC

Regions around the OFC/vmPFC were reported to exhibit
increased risk-related activity in SRAs (k=6; Bolla et al.,
2003; Ersche et al., 2005; Tanabe et al., 2007; Vaidya et al.,
2012; Yamamoto et al., 2014, 2017). Moreover, a positive
relationship between risk-related OFC activity and duration
of substance use (Vaidya et al., 2012) as well as symptom
severity was reported (Fishbein et al., 2005). Of those, one
study employed a decision-making under risk task, whereas
the remaining studies employed the IGT (decision-making
under uncertainty). Only one of the five studies that reported
increased OFC activity also identified increased behavioral
risk-taking in SRAs (during the IGT). A further study which
found elevated levels of behavioral risk-taking (also employ-
ing the IGT), revealed decreased risk-related OFC activity
in individuals with SRAs (Bolla et al., 2005).

Striatum

The ventral striatum as well as the putamen showed
increased risk-related activity in SRAs in two studies where
behavioral performance did not differ between SRAs and
HCs under uncertainty (Bolla et al., 2003; Kohno et al.,
2014). In addition, Yamamoto et al. (2014) found increased
risk-related activity in the dorsal and ventral striatum,
extending to the thalamus and the pallidum, paralleled by
increased risk-taking in SRAs on the IGT. Thus, in total,
k=3 studies reported increased striatal activity in SRAs.
Conversely, one study found decreased ventral striatal activ-
ity (caudate) in a sample of individuals with SRAs who
exhibited increased risk-taking behavior after experiencing
losses under uncertainty (k=1; Gowin et al., 2017). The
putamen seems to respond particularly in the context of
rewards as shown by Gilman et al. (2015). These authors
investigated the effect of accumulated rewards on risk-
related brain activation. Specifically, they found that individ-
uals with SRAs exhibit heightened activation in the putamen
(in addition to the posterior cingulate, the precuneus, and the
thalamus) that correlated with the total accumulated reward
during decisions under uncertainty (Gilman et al., 2015).
Correspondingly, a longitudinal study on individuals with
SRAs reported decreased putamen (as well as decreased dor-
sal ACC) activity at follow-up relative to a baseline assess-
ment to correlate with less substance use during the study
interval (Forster et al., 2016).

Parietal Lobe
In total, k=3 studies revealed increased risk-related activity
of the postcentral gyrus/posterior parietal lobe under uncer-

tainty (Bolla et al., 2003, 2005; Yamamoto et al., 2014).
Two of those, also reported increased behavioral risk-taking

@ Springer

in the SRA group, while the other study found no elevated
risk-taking. In addition, Yamamoto et al. (2014) reported
increased superior parietal activity, while Bolla et al. (2003)
found decreased activity in the superior parietal lobe in
their SRA group. The precuneus, a neighboring region of
the superior parietal lobe also seems to be involved in risk
processing. One study reported increased risk-related pre-
cuneus activity in SRAs compared to controls (Yamamoto
et al., 2014). In addition, Blair et al. (2018) conducted a lon-
gitudinal study on stimulant users and investigated whether
risk-related brain activity differentiated occasional stimulant
users who became problem stimulant users from those who
desisted from stimulant use. Those who became problem
users showed greater precuneus and (posterior cingulate)
activity during risk-related decisions as opposed to those
participants who desisted from use. Similarly, Gilman et al.
(2015) reported increased activation in the precuneus (in
addition to the posterior cingulate, the thalamus, and the
putamen) that correlated with total accumulated reward dur-
ing risk-taking under uncertainty (Gilman et al., 2015).

Temporal Lobe

Three (decision-making under uncertainty) studies that
included a HC group reported risk-related alterations in the
temporal lobe in SRAs. All used the IGT task. Alterations
included decreased activity in the middle temporal gyrus
(Bolla et al., 2003), and decreased (Vaidya et al., 2012) as
well as increased activity in the superior temporal gyrus
(Yamamoto et al., 2014). A longitudinal study on a SRA-
only group reported increased risk-related activity in the
middle temporal as well as inferior temporal gyrus on the
IGT to be associated with an increase in substance use after
6 months (Cousijn et al., 2013). Similarly, another longitu-
dinal study on individuals with SRAs found a longitudinal
decrease in substance use over a 3-month period to corre-
late with less activity in the middle temporal gyrus (Forster
et al., 2016). Both longitudinal studies used decision-making
under uncertainty tasks.

Additional Areas

One study reported increased risk-related activity in the
cuneus (Yamamoto et al., 2014) and k=4 studies identified
altered activity in the cerebellum on the IGT. Of those, three
studies reported increased cerebellar activity (Bolla et al.,
2005; Vaidya et al., 2012; Yamamoto et al., 2014) and one
reported decreased cerebellar activity (Bolla et al., 2003).

Summary

Among studies which investigated risk-related decision-
making in SRAs, convergent attenuated brain activity was
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reported for prefrontal areas, especially the right DLPFC.
This finding seems to be independent of risk-taking behav-
ior, as it was reported by studies which observed behavio-
ral differences in risk-related decision-making and studies
which did not observe such differences. Results further point
to a hyperactivation of the OFC/vmPFC and associations
between OFC hyperactivity and symptom severity across
several studies. Moreover, some evidence suggests risk-
related alterations in additional brain areas, including the
posterior cingulate cortex, the precuneus and the postcen-
tral gyrus which show increased activity across studies, and
also show associations to reward. While results point to
decreased risk-related activity in the anterior insula, risk-
related activity may be increased in the mid insula. Results
regarding the (dorsal) striatum and the dorsal ACC point to
elevated risk-related brain activity. Increased dorsal ACC
activity was mostly reported by studies which could also
show trends towards increased behavioral risk-taking or
could show associations to clinical symptoms. In contrast,
activity in the ventral ACC may be decreased in SRAs. Find-
ings on the temporal lobe are mixed but point to a positive
relationship between activity in the middle temporal lobe
and a longitudinal increase in substance use.

Non-substance Related Addictions

In total, 10 studies investigated neural correlates of risk-
related decisions in individuals with NSRAs, with k=6
studies on individuals with Internet Gaming Disorder (IGD)
and k=4 studies on Pathological Gambling. Of those, seven
studies did find elevated levels of behavioral risk-taking in
individuals with NSRAs, whereas three studies could not
find any behavioral differences regarding risk-taking behav-
ior in NSRAs relative to controls. A total of 187 individu-
als participated across all NSRA studies. The number of
included NSRA individuals per study ranged from 8 to 41.
Table 2 provides an overview of study and sample charac-
teristics of reviewed studies. No symptom-severity-relation-
ships were reported by any of these studies.

DLPFC and Extending Regions

Decreased risk-related brain activity in the DLPFC could
only be identified by one study (Liu et al., 2017). In this
study, participants chose between a safe and a risky option
(decision-making under risk task), either in a gain domain,
where they should win as much money as possible or in a
loss domain, where they should avoid losing money. Para-
metric analyses revealed decreased activation in the DLPFC
(and the inferior parietal lobe/precuneus) in individuals
with Internet Gaming Disorder compared to controls — only
for the loss domain. No group differences were found for
the gain domain. It should be noted that all other studies

reviewed here employed tasks, where participants played
for potential gains. In addition, decreased frontal activity
was reported for the medial frontal gyrus (k=1; Wang et al.,
2017) as well as the precentral gyrus (k=2; Lin et al., 2015;
Wang et al., 2017). These studies revealed increased risk-
taking behavior in individuals with NSRAs on probability
discounting tasks (decision-making under risk).

The superior frontal gyrus was reported to show increased
risk-related activity in k=2 decision-making under uncer-
tainty studies. Increased risk-taking in NSRAs was reported
only by one of these studies (Power et al., 2012) but not by
the other (Miedl et al., 2014).

ACC

Decreased brain activation under risk was reported for the
ventral ACC which was accompanied by increased behav-
ioral risk-taking in individuals with NSRAs (k=1; Dong &
Potenza, 2016).

In contrast, increased brain activation was identified for
the dorsal ACC during a decision-making under risk task
(k=1; Seok et al., 2015). This study also revealed increased
risk-taking behavior.

Insula/IFG

A total of k=35 studies identified decreased risk-related
activity in the left IFG/ventrolateral prefrontal cortex in
NSRAs (Dong & Potenza, 2016; Lin et al., 2015; Liu et al.,
2017; Seok et al., 2015; Wang et al., 2017). All, but one
study used decision-making under risk tasks and revealed
increased behavioral risk-taking in individuals with NSRAs.
The study which could not reveal increased risk-taking
employed the Cups Task (decision making under risk)
and — as mentioned before — reported effects for conditions
focusing on loss avoidance (Liu et al., 2017). In contrast, in
a decision-making under uncertainty setting which did not
reveal any behavioral differences between individuals with
NSRAs and HCs, right IFG activity seems to be increased
(k=1; Miedl et al., 2010).

OFC/vmPFC

In total, k=3 studies (k=2 decision-making under uncer-
tainty and k=1 decision-making under risk) revealed
increased OFC/vmPFC activity in individuals with
NSRAs. Of those, two studies investigated decision-mak-
ing under uncertainty (Miedl et al., 2014; Power et al.,
2012) and one study investigated decision-making under
risk (Liu et al., 2017).

@ Springer
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Striatum

Increased striatal activity in individuals with NSRAs was
reported by k=4 studies. All of them also reported increased
risk-taking in NSRAs. The dorsal striatum (putamen and
well as caudate nucleus) showed increased activity in k=3
studies (under risk as well as uncertainty; Brevers et al.,
2015; Power et al., 2012; Seok et al., 2015). Moreover,
the adjacent nucleus accumbens (ventral striatum) showed
increased activity under risky decision-making (k=1; Wang
et al., 2021).

Parietal Lobe

The inferior parietal lobe/the precuneus showed reduced
activity in k=2 studies (Dong & Potenza, 2016; Liu et al.,
2017). Specifically, Liu et al. (2017) could not identify any
behavioral alterations during a decision-making under risk
task in their NRA group. Moreover, as mentioned above,
they could not find any group differences when their par-
ticipants played for potential gains — only when they played
to avoid losses. Dong and Potenza (2016) reported less
activation in the inferior partial lobe (and the posterior cin-
gulate cortex) along with increased risk-taking behavior in
individuals with NSRAs during a decision-making under
uncertainty task. In contrast, one study identified increased
precuneus activity and increased risk-taking behavior under
risky decision-making (Wang et al., 2021).

Temporal Lobe

Findings on the temporal lobe are mixed. In total, k=3 stud-
ies reported altered risk-related temporal activity. Specifi-
cally, Dong and Potenza (2016) reported decreased supe-
rior temporal and middle temporal activity (accompanied
by increased behavioral risk-taking). In contrast, Miedl
et al. (2010) reported increased superior temporal activity
and Wang et al. (2021) reported increased middle temporal
activity.

Additional Areas

In addition, k=2 studies identified increased risk-related
activity in the thalamus during decision-making under
uncertainty (Miedl et al., 2010, 2014). Power et al. (2012)
employed the IGT (decision-making under uncertainty)
and reported increased activity in the amygdala and in the
brainstem which was accompanied by increased risk-taking.
Finally, several studies (k=3) reported decreased activity in
occipital brain regions for decisions under risk (k=2; Dong
& Potenza, 2016; Liu et al., 2017) and under uncertainty

@ Springer

(k=1; Power et al., 2012). In contrast, one study found
increased activity in the middle occipital gyrus under risk
(Wang et al., 2021).

Summary

Taken together, studies on risk-related decision-making in
individuals with NSRAs reported widespread activation dif-
ferences compared to controls. Concordant alterations point
to hypoactivity in the inferior frontal cortex and hyperac-
tivity in the OFC/vmPFC in both those studies reporting
increased behavioral risk-taking in NSRAs and those studies
which did not report such behavioral differences. In contrast,
(dorsal) striatal hyperactivity was only reported by studies
that also found increased behavioral risk-taking. Additional
preliminary evidence points to hyperactivity of the thalamus,
the dorsal ACC and hypoactivity of the ventral ACC. Find-
ings regarding further brain areas are rather mixed.

Compared to studies on SRAs, this review identified
both overlapping and specific brain activation patterns for
NSRAs. These preliminary findings suggest concordant
alterations in SRAs and NSRAs in the OFC/vmPFC and
the striatum. These regions show increased activity in both
addiction types during risk-related decisions. Across stud-
ies, increased activity could be identified in both SRAs
and NSRAs, irrespective of behavioral task performance.
Increased dorsal ACC activity was also reported for both
addiction types, but only in studies which also revealed
relationships to behavioral risk-taking. In contrast, studies
that identified neural alterations in the ventral ACC revealed
decreased activity in both addiction groups. Interestingly, the
postcentral gyrus, posterior cingulate and precuneus activ-
ity seem to be increased in SRAs. In contrast, activity in
these regions seem to be decreased in NSRAs. We could also
identify differing risk-related patterns of brain activity for
the two addiction types. A finding specific to SRA studies
is decreased right DLPFC activity, whereas left IFG activity
was mostly reported by NSRA studies. To clarify if frontal
areas that altered in NSRAs are distinct from the DLPFC, we
extracted reported brain coordinates and overlaid them with
a DLPFC mask (see supporting information Fig. S1). This
underlined that reduced DLPFC activity may only occur in
individuals with SRAs.

Discussion

We here examined neural correlates of risk-related deci-
sion making in individuals with SRAs and individuals with
NSRAs. Furthermore, we aimed to provide preliminary
comparative results of these two groups to identify overlap-
ping as well as differing alterations in neural correlates of
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risk-related decision-making. This approach is in line with
the Research Domain Criteria principle of studying mental
disorders beyond their diagnostic boundaries (Cuthbert &
Insel, 2013).

Although currently available studies on risk-related
decision-making, especially in the domain of NSRAs, are
sparse, we did find interesting similarities and differences
between the two addiction types that may be further vali-
dated by future studies. One difference relates to alterations
in posterior cingulate and precuneus activation. These areas
may be affected by both SRAs and NSRAs. However, while
activity in these regions seems to be increased in SRAs,
the activity appears to be decreased in NSRAs. Activity in
these regions in response to risky situations has also been
observed in normative samples (Paulus et al., 2003; Roy
et al., 2011) and it has been suggested that these regions
may be involved in tracking risky subjective value and
may provide a willingness to accept uncertain outcomes
for a chance to receive greater rewards (Coutlee et al.,
2016). Interestingly, decreased precuneus/inferior parietal
lobe activation in NSRAs was reported, amongst others,
for situations where participants played to avoid losses.
This experimental situation differs from all other studies
reviewed here, which all employed tasks where partici-
pants play for potential gains. Future studies may ascertain
whether individuals with SRAs also show increased precu-
neus/inferior parietal lobe activation under loss avoidance
situations. The precuneus and the posterior cingulate cortex
are part of the default mode network, which is active dur-
ing self-referential processes, such as self-awareness and
self-reflection (Andrews-Hanna, 2012). A review on the
involvement of different brain networks in different addic-
tion cycles concluded that default mode network activity
was decreased during decision-making tasks in individuals
with SRAs (Zilverstand et al., 2018). This stands in con-
trast to results of our review suggesting increased default
mode network activity. It should be noted that the review
by Zilverstand et al. (2018) included studies which focus
on outcome-processing (i.e., loss evaluation), whereas our
review focuses on the actual decision stage. Together with
our findings on NSRAs, it may be speculated that default
mode network activity may be increased during risk-related
decisions and decreased under loss evaluation conditions
in addiction. However, this speculation needs to be further
investigated.

Another area of divergence relates to the inferior frontal
gyrus (IFG). Compared to HCs, neural activity during risk-
taking in this brain region is reduced in individuals with
NSRAs. Our systematic review could not find any evidence
for altered patterns of IFG activity in SRAs. However, we
did find reduced activity in the anterior insula, a region adja-
cent to the IFG, in SRAs. The anterior insula is often coacti-
vated with the IFG and reviewed studies may have detected

and reported peak activation only for one of the regions.
Activity in the IFG/anterior insula is modulated by indi-
vidual risk processing and more specifically by risk/harm
avoidance (Christopoulos et al., 2009; Fukunaga et al., 2018;
Paulus et al., 2003; Preuschoff et al., 2006). Interestingly,
studies that reported diminished IFG activity in NSRAs
all used decision-making under risk tasks and reported
increased risk-taking behavior. The majority of studies on
SRAs employed decision-making under uncertainty tasks
and, mostly, could not reveal altered risk-taking behavior.
One of the reviewed studies that reported diminished activ-
ity in the anterior insula, extending to the IFG also found
increased risk-taking behavior in their SRA group. In fact,
they reported a link between risk behavior and anterior
insula activity where task performance of the SRA group
reflects lower risk-aversion signals in the anterior insula/IFG
(Fukunaga et al., 2013). The extent to which diminished IFG
activity in NSRAs may relate to task properties, risk percep-
tion, or another factor specific to individuals with NSRAs
remains to be further investigated.

The dorsal ACC is closely connected to the anterior
insula/IFG and is also implicated in a wealth of functions
during decision-making, such as signaling error and reward
(Alexander & Brown, 2019), as well as the value of behavio-
ral change and individuals risk tendencies (Fukunaga et al.,
2018; Kolling et al., 2012, 2016). For both addiction types,
findings regarding the dorsal ACC point to increased activ-
ity, which was always accompanied by increased behavioral
risk-taking. As suggested elsewhere, for SRAs the dorsal
ACC may fail to integrate outcomes into an online prediction
of what will happen for each choice, which leads to repeat-
edly choosing disadvantageous options (Gowin et al., 2017).
Additionally, increased dorsal ACC activity may be related
to symptom severity in SRAs.

Another difference in findings regards the DLPFC.
Hypoactivation of the right DLPFC was characteristic of
SRAs during risk-related decisions across a variety of dif-
ferent tasks. DLPFC hypoactivation in SRAs has been iden-
tified before in previous reviews (Gowin et al., 2013) and
it has been suggested that structural and functional altera-
tions in the DLPFC may originate from severe drug use
(Bolla et al., 2005). This is supported by structural imaging
studies reporting reduced prefrontal grey matter density in
several SRAs, including alcohol, cocaine, methampheta-
mine, and heroin addiction (Goldstein & Volkow, 2011).
The right DLPFC plays a rather specific role in risk-related
decision-making and is involved in valuing and integrating
choice options before making a decision (Ernst & Paulus,
2005; Mohr et al., 2010). Moreover, it has been argued
that DLPFC activity during value-based processes cannot
be attributed entirely to a strict “cognitive” role. In fact, it
may represent value information in relation to cognitive
information (e.g., task-rules) providing a top-down control
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on core value regions (Dixon & Christoff, 2014). Interest-
ingly, areas belonging to the brain’s valuation system such
as the vmPFC, the striatum as well as the posterior cingu-
late show increased brain activation in studies reporting
decreased DLPFC activity (c.f. Table 2), supporting the
notion of a potential top-down influence of the DLPFC on
the value system. However, this is an associative observa-
tion and may be tested by connectivity analyses. Attenu-
ated risk-related activity in the DLPFC may thus lead to
a devaluation of disadvantageous stimuli during decision-
making in SRAs and to a reduced top-down influence on
core value regions. We could only identify sparse evidence
for reduced risk related (right) DLPFC activity in NSRAs.
Due to paucity of data, firm conclusions, however, cannot
be drawn about functional DLFPC reactivity in response to
risk-related decision-making in NSRAs. Further research is
needed in order to clarify whether individuals with NSRAs
are able to recruit the DLPFC during risk-related decision
making or not.

As mentioned above, results of the current review point
to increased striatal as well as OFC activity under risky situ-
ations in SRAs but also in NSRAs. Areas adjacent to the
striatum such as the thalamus and the globus pallidus also
seem to show increased risk-related activity as reported by
some studies. These findings represent a similarity across
addiction types and suggest that alterations in these brain
areas may be implicated in the psychopathology of addic-
tive disorders. The striatum and the vimPFC have been
ascribed to the brain’s core value system. In the neurosci-
entific literature, it is well established that they represent
reward and preference and automatically track subjective
value across different contexts (Bartra et al., 2013; Clithero
& Rangel, 2014; Levy & Glimcher, 2012; Schmidt et al.,
2017). In addition to its role in tracking subjective value
during value-based decisions, the striatum (especially the
dorsal striatum) has been associated with action-contingent
learning in addiction and has been implicated in the transi-
tion from recreational to chronic use (Everitt & Robbins,
2013). Moreover, frontostriatal loops that initially involve
the ventral striatum may progressively transition to recruit
more dorsal parts of the striatum in SRAs and other impulse
control disorders (Brewer & Potenza, 2008).

Increased OFC/vmPFC as well as striatal activation in
addictive disorders are in line with the general notion of
an increased reward sensitivity (Balodis & Potenza, 2015;
Garcia-Garcia et al., 2014; Luijten et al., 2017) and an over-
valuation of rewarding stimuli in addiction (Schultz, 2011).
Recently, the OFC has been conceptualized as providing
a cognitive map of task/state space that enables inference
of relationships that are not directly observed (Murray &
Rudebeck, 2018; Stalnaker et al., 2015; Wilson et al., 2014,
Yu et al., 2020). Such a neural representation of stimuli,
actions, value, and other sensory features could explain
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OFC’s role in decision-making as a comparison of differ-
ent values at each task state which may be over-valuated in
addiction. Rewarding stimuli may include disorder-specific
stimuli as well as secondary rewards (e.g., money). Impor-
tantly, this seems to be true for the anticipation of rewards,
or in the case of risk-taking, the decision phase as identi-
fied by this review. In contrast, studies focusing on reward
delivery suggest that individuals with SRAs exhibit a neural
overvaluation of drug-related rewards and an undervalua-
tion of nondrug rewards in response to reward reception
(Gradin et al., 2014); albeit studies on neural responses to
secondary rewards are somewhat inconclusive (Balodis &
Potenza, 2015).

A further similarity corresponds to findings regarding
the ventral ACC, although studies reporting risk-related
alterations in this area are scare. Specifically, activity in
the ventral ACC seems to be attenuated in both addiction
types, but especially in SRAs. The ventral ACC is involved
in hedonic evaluation during decision-making (Bush et al.,
2000; Park et al., 2011; Phan et al., 2002; Vogt et al., 2005).
Animal studies on the ventral ACC show that it is impli-
cated in maintaining heightened arousal in reward contexts
(Rudebeck et al., 2014). Reduced processing of risky stimuli
in SRAs and NSRAs may represent apathetic behavior seen
in individuals with addictions. A study not included in this
review also reported attenuated ventral ACC activity on
occasional stimulant users (Reske et al., 2015). Ventral ACC
activity may be, therefore, already altered in individuals not
showing the full-blown symptomatology of addiction. This
speculation needs to be further investigated in longitudinal
or family studies.

Additional risk-related alterations in activity were
reported by several studies and included temporal and
occipital regions as well as the cerebellum. Data on these
regions is, however, scarce and mixed regarding the direc-
tion of alterations. Therefore, no concluding evidence can
be obtained.

Limitations, Implications and Future Directions

At this juncture, open questions remain and more research
is needed in order to validate the preliminary findings gath-
ered in this review. Interpretation of the results from this
review are limited by several factors. The most important
factors to note are (1) variability in methods (utilized tasks
and neuroimaging approaches) and (2) heterogeneity in
included disorders. Specifically, we compared different kind
of tasks in different populations. While most SRA studies
employed standard decision-making under uncertainty tasks
(e.g., Balloon Analogue Risk Task, Iowa Gambling Task,
Risky Gains Task; c.f. Table 2), the majority of NSRA stud-
ies used self-developed tasks and probability discounting
tasks. Therefore, it is possible that the lack of evidence for
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Table 3 Limitations of the examined studies and the review itself and suggestions for future directions

Limitations

Suggestions for future directions

Differences in utilized tasks do not allow for definite conclusions
about differences and similarities in neural correlates of risk-related
decision-making in SRA and NSRAs

Conclusions of this review are limited by the fact that the sample sizes of
reviewed studies was rather low and ranged from 12 to 75 participants
in the group of interest. Studies on SRAs included a median of 21.5
(M =28) participants, whereas studies on NSRAs included a median of
15 (M =18) participants. These sample sizes are generally associated
with low statistical power (Poldrack et al., 2017; Szucs & loannidis,
2020)

Evidence gained by the current review is correlational in nature. We
cannot draw conclusions about the cause of aberrant risk-related
neural activations

We summarized findings on altered activity in specific brain regions in
isolation. However, it is known that brain regions work together

- Especially in the domain of NSRAs more studies which assess
decision-making under uncertainty may be conducted

- Conversely, in the domain of SRAs, more studies which assess
decision-making under risk may be conducted

- For direct comparison, studies may use a task battery of different
risk-related decision-making tasks and use these tasks in both addiction
types, ideally in one study

Studies with larger sample sizes may be conducted
A priori power analysis may be conducted; for example with
Neuropower (neuropowertools.org)

- Longitudinal and/or family studies may be conducted

- Brain network analyses may be conducted

altered DLPFC activity in NSRAs (and for altered IFG activ-
ity in SRAs) is related to differences in tasks used. Future
studies may compare individuals with SRAs to those with
NSRAs in one study in order to examine potential differ-
ences and similarities more directly. In particular, studies
may use standardized tasks or a task battery and use these
tasks in both addiction types, ideally in one study. Moreover,
due to the sparsity of studies, we included both fMRI and
PET studies. Although both methods measure cerebral blood
flow, there are differences between the two methods. Most
important to note is that fMRI usually has a higher resolu-
tion compared to PET imaging.

The second factor adding complexity to this review is
the heterogeneity of included disorders. Specifically, we
reviewed different SRA types, with different substances
underlying the addiction, and with different substances
expressing distinct psychopharmacological profiles. It is
likely that these different SRAs may also have different
neural profiles (depending on pharmacological properties
of the specific substance), which we could not identify in
this review.

Moreover, most reviewed studies were cross-sectional
in nature. More longitudinal studies are needed in order to
investigate whether alterations in risky decision-making pro-
cesses are a cause or a consequence of addictive disorders. In
addition, within-subject designs may also reveal predictors
for relapse or recovery as shown by the study conducted by
Blair et al. (2018).

It should also be noted that our conclusions are based
on a small number of studies. We identify a lack of studies
specifically with regard to investigating neural correlates
of NSRAs. Therefore, meta-analytic techniques in order to

quantitatively support our conclusions could not be applied.
Future single studies as well as study syntheses may focus
on brain networks related to risk-related decision-making in
addiction. For example, several single fMRI studies as well
as reviews on brain structure point to an aberrant frontos-
triatal network in SRAs (Hampton et al., 2019; Jentsch &
Taylor, 1999; Suckling & Nestor, 2017). It may be of interest
to investigate different networks under risky situations.

Future studies may also investigate potential differences
between decisions under risk and decisions under uncer-
tainty in these populations. In the current review, we could
not identify alterations specific to either risk-taking type,
which may be owed to the sparsity of studies (c.f. Table 2).
Further task properties may also influence risk-related brain
activation. For example, the presence of potential losses may
yield different brain activation patterns compared to situa-
tions where negative trial outcomes have no consequences at
all or only lead to smaller positive gains compared to posi-
tive trial outcomes. In healthy individuals, the possibility of
facing losses indeed modulates brain activity (Mohr et al.,
2010). It is beyond the scope of this review to investigate
such potential task effects which are worth investigating in
addiction in the future. An overview on identified limita-
tions and suggestions for future directions may be found in
Table 3.

Conclusions

This systematic review highlights similarities and differ-
ences in neural correlates of risk-related decision-making
between different addiction types (SRAs and NSRAs). Here,
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we gather exploratory evidence of altered risk-related pro-
cesses, including hyperactivity in the OFC and the striatum
in both addiction types. As characteristic for both addic-
tion types, these brain regions may represent an underly-
ing mechanism of suboptimal decision-making. In contrast,
decreased DLPFC activity may be specific to SRAs and
decreased IFG activity could only be identified for NSRAs.
While findings regarding the precuneus and posterior cingu-
late point to elevated risk-related activity in SRAs, findings
regarding these regions are mixed but rather point to attenu-
ated activation patterns in NSRAs. Additional scarce evi-
dence suggests decreased ventral ACC activity and increased
dorsal ACC activity in both addiction types. However, these
preliminary findings should be interpreted with caution due
to a lack of studies is this field. Future research is needed to
evaluate the findings gathered by this review.
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