000911076 001__ 911076
000911076 005__ 20221114130836.0
000911076 0247_ $$2arXiv$$aarXiv:2204.02742
000911076 0247_ $$2Handle$$a2128/32561
000911076 037__ $$aFZJ-2022-04402
000911076 088__ $$2arXiv$$aarXiv:2204.02742
000911076 1001_ $$0P:(DE-Juel1)159481$$aLuu, Tom$$b0$$ufzj
000911076 245__ $$aLocalization of Electronic States in Hybrid Nano-Ribbons in the Non-Perturbative Regime
000911076 260__ $$c2022
000911076 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1668422371_11751
000911076 3367_ $$2ORCID$$aWORKING_PAPER
000911076 3367_ $$028$$2EndNote$$aElectronic Article
000911076 3367_ $$2DRIVER$$apreprint
000911076 3367_ $$2BibTeX$$aARTICLE
000911076 3367_ $$2DataCite$$aOutput Types/Working Paper
000911076 500__ $$a27 pages, 17 figures
000911076 520__ $$aWe investigate the localization of low-energy single quasi-particle states in the 7/9-hybrid nanoribbon system in the presence of strong interactions and within a finite volume. We consider two scenarios, the first being the Hubbard model at half-filling and perform quantum Monte Carlo simulations for a range $U$ that includes the strongly correlated regime. In the second case we add a nearest-neighbor superconducting pairing $\Delta$ and take the symmetric line limit, where $\Delta$ is equal in magnitude to the hopping parameter $t$. In this limit the quasi-particle spectrum and wavefunctions can be directly solved for general onsite interaction $U$. In both cases we extract the site-dependent quasi-particle wavefunction densities and demonstrate that localization persists in these non-perturbative regimes under particular scenarios.
000911076 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
000911076 588__ $$aDataset connected to DataCite
000911076 7001_ $$0P:(DE-Juel1)131252$$aMeissner, Ulf-G.$$b1$$ufzj
000911076 7001_ $$0P:(DE-Juel1)186722$$aRazmadze, Lado$$b2$$eCorresponding author$$ufzj
000911076 8564_ $$uhttps://juser.fz-juelich.de/record/911076/files/2204.02742.pdf$$yOpenAccess
000911076 909CO $$ooai:juser.fz-juelich.de:911076$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000911076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159481$$aForschungszentrum Jülich$$b0$$kFZJ
000911076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b1$$kFZJ
000911076 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186722$$aForschungszentrum Jülich$$b2$$kFZJ
000911076 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
000911076 9141_ $$y2022
000911076 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911076 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000911076 980__ $$apreprint
000911076 980__ $$aVDB
000911076 980__ $$aUNRESTRICTED
000911076 980__ $$aI:(DE-Juel1)IAS-4-20090406
000911076 9801_ $$aFullTexts