Home > Publications database > Localization of Electronic States in Hybrid Nano-Ribbons in the Non-Perturbative Regime > print |
001 | 911076 | ||
005 | 20221114130836.0 | ||
024 | 7 | _ | |a arXiv:2204.02742 |2 arXiv |
024 | 7 | _ | |a 2128/32561 |2 Handle |
037 | _ | _ | |a FZJ-2022-04402 |
088 | _ | _ | |a arXiv:2204.02742 |2 arXiv |
100 | 1 | _ | |a Luu, Tom |0 P:(DE-Juel1)159481 |b 0 |u fzj |
245 | _ | _ | |a Localization of Electronic States in Hybrid Nano-Ribbons in the Non-Perturbative Regime |
260 | _ | _ | |c 2022 |
336 | 7 | _ | |a Preprint |b preprint |m preprint |0 PUB:(DE-HGF)25 |s 1668422371_11751 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a WORKING_PAPER |2 ORCID |
336 | 7 | _ | |a Electronic Article |0 28 |2 EndNote |
336 | 7 | _ | |a preprint |2 DRIVER |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Output Types/Working Paper |2 DataCite |
500 | _ | _ | |a 27 pages, 17 figures |
520 | _ | _ | |a We investigate the localization of low-energy single quasi-particle states in the 7/9-hybrid nanoribbon system in the presence of strong interactions and within a finite volume. We consider two scenarios, the first being the Hubbard model at half-filling and perform quantum Monte Carlo simulations for a range $U$ that includes the strongly correlated regime. In the second case we add a nearest-neighbor superconducting pairing $\Delta$ and take the symmetric line limit, where $\Delta$ is equal in magnitude to the hopping parameter $t$. In this limit the quasi-particle spectrum and wavefunctions can be directly solved for general onsite interaction $U$. In both cases we extract the site-dependent quasi-particle wavefunction densities and demonstrate that localization persists in these non-perturbative regimes under particular scenarios. |
536 | _ | _ | |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5111 |c POF4-511 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Meissner, Ulf-G. |0 P:(DE-Juel1)131252 |b 1 |u fzj |
700 | 1 | _ | |a Razmadze, Lado |0 P:(DE-Juel1)186722 |b 2 |e Corresponding author |u fzj |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/911076/files/2204.02742.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:911076 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)159481 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131252 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)186722 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5111 |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-4-20090406 |k IAS-4 |l Theorie der Starken Wechselwirkung |x 0 |
980 | _ | _ | |a preprint |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-4-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|