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The low-energy chiral effective field theory of vector mesons and Goldstone bosons in an external
gravitational field is considered. The energy-momentum tensor is obtained, and the gravitational form
factors of the ρ-meson are calculated up to next-to-leading order in the chiral expansion. This amounts to
considering tree-level and one-loop order diagrams. The chiral expansion of the form factors at zero
momentum transfer, as well as of the slope parameters, is also performed. Also, the long-range behavior of
the energy and internal force distributions is obtained and analyzed.
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I. INTRODUCTION

The linear response of a hadron to a change of the
background space-time metric is described by the gravita-
tional form factors (GFFs). For the first time, the GFFs for
spin-0 and spin-1=2 particles were introduced and dis-
cussed in detail in Refs. [1,2], for spin-1 particles in
Ref. [3], and for hadrons with arbitrary spin in the recent
work of Ref. [4]. The GFFs contain rich information about
the internal structure of hadrons, such as the distribution
of the spin [5], the energy distribution [6], and the
elastic pressure and shear force distributions [7]. For recent
reviews, see Refs. [8,9].
Our aim here is to study the GFFs of the spin-1ρ-meson

in chiral effective field theory (EFT). Hadrons with spin
S > 1=2 are not spherically symmetric. The spin, energy,
and force distributions acquire higher multipole compo-
nents (quadrupole, etc.) [4,10–13]. The higher multipole
energy and force distributions carry valuable information
about the mechanisms of the hadron’s binding. For exam-
ple, the large-Nc picture of baryons as chiral solitons
implies certain relations between the quadrupole energy
and the force distributions [11,14]. Experimental checks of

these relations would allow one to reveal the nature of
higher spin baryons.
TheGFFs of the ρ-mesonwere computed inRefs. [15–17]

using various approaches. More recently, the gluon part of
the GFFs was obtained in lattice QCD calculations [18].
Here, we investigate the dependence of the ρ-meson GFFs
on the soft scales (pion mass, small momentum transfer)
using chiral EFT. To this end, following the logic of
Ref. [19], we first write down the chiral effective action
for the ρ- and ω-mesons and pions in an external gravi-
tational field. Next, we obtain the corresponding energy-
momentum tensor (EMT) and compute the chiral correc-
tions to the GFFs of the ρ-meson. The corresponding
calculation, in particular, allows us to obtain the large
distance behavior of the energy and force distributions. The
results of our study can also be used in chiral extrapolations
of the lattice-QCD simulations down to the physical values
of the pion masses.
Chiral EFTs with heavy degrees of freedom encounter a

nontrivial power-counting problem [20]. In the one-
nucleon sector of baryon chiral perturbation theory, this
problem can be solved by applying the heavy-baryon
approach [21,22] or a suitably chosen renormalization
condition [23–26]. Because of the small nucleon-delta
mass difference, the Δ resonance can also be consistently
included in the framework of EFT [27–30].
The treatment of the ρ-meson in chiral EFT is compli-

cated as it decays into two pions with masses that vanish in
the chiral limit. Because of this, for energies of the order of
the ρ-meson mass, loop diagrams develop large imaginary
parts. In distinction to the baryonic sector, these large
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power-counting-violating contributions cannot be absorbed
in the redefinition of the parameters of the Lagrangian as
long as the usual renormalization procedure is used. Still,
the problem can be handled [31] by using the complex-
mass renormalization scheme [32,33], which is an exten-
sion of the on-mass-shell renormalization scheme to
unstable particles. For more details on and different
approaches to these problems, see e.g., Refs. [34–42].
Our work is organized as follows. In Sec. II we write

down the action corresponding to the effective Lagrangian
up to next-to-leading order and obtain the pertinent EMT.
In Sec. III we briefly discuss the renormalization and the
power counting. The definition and the calculations of the
GFFs of the ρ-meson are presented in Sec. IV, which also

contains various chiral expansions of the obtained results.
Section V is devoted to the discussion of the energy and the
force distributions, and we summarize the obtained results
in Sec. VI.

II. EFFECTIVE LAGRANGIAN AND THE
ENERGY-MOMENTUM TENSOR

Using the results of Refs. [31,43], we consider the
following action of ρ- and ω-mesons and pions using
the parametrization of model III of Ref. [34] (where the
ρ-meson vector fields transform inhomogeneously under
chiral transformations), interacting with an external gravi-
tational field gμν:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F2

4
gμνTrðDμUðDνUÞ†Þ þ F2

4
TrðχU† þ Uχ†Þ

−
1

2
gμνgαβTrðρμαρνβÞ þ gμν

�
M2

R þ cxTrðχU† þUχ†Þ
4

�
Tr

��
ρμ −

iΓμ

g

��
ρν −

iΓν

g

��

−
1

4
gμνgαβð∂μωα − ∂αωμÞð∂νωβ − ∂βωνÞ þ gμν

M2
ωωμων

2
þ gωρπ
2

ffiffiffiffiffiffi−gp ϵμναβωνTrðραβuμÞ

þ ½v1 þ v2TrðχU† þ Uχ†Þ�RTrðρμρμÞ þ v3RμνTrðρμρνÞ

þ v4RTrðραβραβÞ þ v5RμνgαβTrðρμαρνβÞ þ v6RμναβTrðρμνραβÞ
�
; ð1Þ

where

U ¼ u2 ¼ exp

�
iτ⃗ · π⃗
F

�
;

ρμ ¼ τ⃗ · ρ⃗μ

2
;

ρμν ¼ ∂μρν − ∂νρμ − ig½ρμ; ρν�;
χ ¼ 2B0ðsþ ipÞ;

DμU ¼ ∂μU − irμU þ iUlμ;

Γμ ¼
1

2
½u†∂μuþ u∂μu† − iðu†rμuþ ulμu†Þ�;

uμ ¼ i½u†∂μu − u∂μu† − iðu†rμu − ulμu†Þ�: ð2Þ

Terms involving the Riemann tensor Rμναβ, the Ricci tensor
Rμν, and the Ricci scalar R (for definitions of these
quantities, see e.g., Ref. [44]) are those with nonminimal
coupling of the ρ-meson fields to gravity, which are
relevant for the considered order of accuracy. The param-
eter B0 is proportional to the scalar vacuum condensate, and
s, p, lμ ¼ vμ − aμ, and rμ ¼ vμ þ aμ are external sources,
while F denotes the pion-decay constant in the chiral limit.
Further, M2

R and M2
ω are the (complex) pole positions

of ρ and ω propagators in the chiral limit, and the

viði ¼ 1;…; 6Þ, g, cx, and gωρπ are coupling constants.
For the ρππ coupling we use [45]

M2
R ¼ ag2F2; ð3Þ

which, in the case of a ¼ 2, amounts to the KSFR relation
[46–48]. Although phenomenologically a ≃ 2, in what
follows we will explicitly keep this parameter. All param-
eters of the effective Lagrangian are to be interpreted as
renormalized ones. We apply the complex-mass scheme
and do not show counterterms explicitly; however, their
contributions are taken into account in calculations of the
quantum corrections to the physical quantities. Notice that
all couplings (including the vi, the parameters of non-
minimal couplings to gravity, resulting mainly from the
compositeness of the ρ-meson) are assumed to be domi-
nated by the scale of the strong interaction ∼1 GeV.
Applying the standard formula for the EMT of matter

fields interacting with the metric fields [44],

Tμν ¼
2ffiffiffiffiffiffi−gp δS

δgμν
; ð4Þ

to the action of Eq. (1), we obtain, in flat space-time,
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Tμν ¼
F2

4
TrðDμUðDνUÞ† þDνUðDμUÞ†Þ

− ημν

�
F2

4
TrðDαUðDαUÞ†Þ þ F2

4
TrðχU† þ Uχ†Þ

�

− 2ηαβTrðρμαρνβÞ þ 2

�
M2

ρ þ
cxTrðχU† þ Uχ†Þ

4

�
Tr

��
ρμ −

iΓμ

g

��
ρν −

iΓν

g

��

− ημν

�
−
1

2
TrðραβραβÞ þ

�
M2

ρ þ
cxTrðχU† þ Uχ†Þ

4

�
Tr

��
ρα −

iΓα

g

��
ρα −

iΓα

g

���

− ηαβð∂μωα − ∂αωμÞð∂νωβ − ∂βωνÞ þM2
ωωμων

− ημν

�
−
1

4
ð∂αωβ − ∂βωαÞð∂αωβ − ∂βωαÞ þM2

ωωαω
α

2

�

þ 2ðημν∂2 − ∂μ∂νÞf½v1 þ v2TrðχU† þ Uχ†Þ�TrðραραÞ þ v4TrðραβραβÞg
þ ðημαηνβ∂2 þ ημν∂α∂β − ημα∂ν∂β − ηνα∂μ∂βÞ½v3TrðραρβÞ þ v5ηλσTrðραλρβσÞ�
þ 4v6ηαληβσ∂λ∂σTrðρμβρνβÞ; ð5Þ

where ημν is the metric tensor in Minkowski space.

III. RENORMALIZATION AND
POWER COUNTING

To perform the renormalization we express the bare
quantities in terms of renormalized ones and counterterms
and apply the complex-mass renormalization scheme
[32,33]. We parametrize the pole of the ρ-meson dressed
propagator in the chiral limit as M2

R ¼ ðMχ − iΓχ=2Þ2,
where Mχ and Γχ are the pole mass and width of the
ρ-meson in the chiral limit, respectively. Both are input
parameters within our formalism.
Following Ref. [31], we fix the mass counterterm and the

wave function renormalization constant by requiring that,
in the chiral limit, M2

R coincides with the pole position
of the dressed propagator and the residue is equal to unity.
The renormalized complex mass MR appears in the
propagator, and the counterterms are included perturba-
tively. Notice that in the complex-mass renormalization
scheme, the counterterms are also complex quantities.
However, this does not lead to a violation of unitarity as
one might naively expect [49,50]. Let us demonstrate this
using the example of the renormalization of the ρ-meson
mass. The Lagrangian is given in terms of bare parameters,
and physical quantities can also be calculated in terms of
these parameters within some ultraviolet regularization
scheme. The physical mass of a stable particle, as well
as the mass and width of an unstable particle, can be
obtained from the corresponding two-point function by
finding its pole position. Defining the self-energy of the
ρ-meson as the sum of all one-particle irreducible diagrams
contributing to the two-point function of the ρ-meson field
operators, we parametrize this quantity as

iΠμνðpÞ ¼ iðgμνΠ1ðp2Þ þ pμpνΠ2ðp2ÞÞ: ð6Þ

The equation determining the pole position z of the two-
point function written in terms of the bare parameters has
the form

z −M2
0 − Π1ðz;M0;Mπ; � � �Þ ¼ 0; ð7Þ

where M0 is the bare mass of the ρ-meson, Mπ is the pion
mass, and the ellipses denote other parameters of the
Lagrangian and also the ultraviolet regulator. The solution
to Eq. (7) has the form

z ¼ fðM0;Mπ; � � �Þ≡M2
0 þ corrections: ð8Þ

We denote the quantity z in the chiral limit by M2
R and

invert Eq. (8) for Mπ ¼ 0 to obtain

M2
0 ¼ f−1ðM2

R; 0;…Þ≡M2
R þ ℏδM2ðℏ;M2

R; � � �Þ; ð9Þ

where M2
R and δM2 are both complex, while M2

0 is real.
We have indicated the explicit factor of ℏ to emphasize
that within the formalism employed in the current work,
after substituting Eq. (9) in the Lagrangian, we treat the
second term on the right-hand side (after further expanding
it in powers of ℏ) together with the loop diagrams, i.e.,
perturbatively.
For the effective Lagrangian, we apply the standard rules

counting the pion mass and the derivatives acting on pion
fields as small quantities, while the derivatives acting on the
heavy vector mesons count as large quantities of orderOð1Þ.
The large mass of the ρ-meson that does not vanish in the
chiral limit violates the simple correspondence between the
power counting for the Lagrangian and the power counting
for the loop diagrams, thus leading to a considerable
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complication. One needs to investigate all possible flows of
the external momenta through the internal lines of the
considered loop diagram. Next, assigning powers to propa-
gators and vertices, one needs to determine the chiral order
for a given flow of external momenta. Finally, the smallest
order resulting from all possible assignments should be
defined as the chiral order of the given diagram [31]. To
assign the corresponding chiral order to a diagram for a given
flow of external momenta, we apply the following rules:
Taking q as a small quantity like the pion mass or small
external momenta, pion propagators count as Oðq−2Þ if not
carrying large external momenta while Oðq0Þ otherwise. A
vector-meson propagator counts asOðq0Þ if it does not carry
large external momenta and asOðq−1Þ if it does. The vector-
mesonmass counts asOðq0Þ, thewidth of the vector mesons
as well as the pion mass count asOðq1Þ. Interaction vertices

generated by the effective Lagrangian of the order n do not
automatically count asOðqnÞ but rather need to be assigned
orders according to a given flow of large and small external
momenta. As the contributions of loops involving only
vector meson propagators can be absorbed systematically
in the redefinition of the parameters of the effective
Lagrangian, such loop diagrams need not be included at
low energies.

IV. GRAVITATIONAL FORM FACTORS OF THE
ρ-MESON: DEFINITIONS AND CALCULATION

The GFFs of a spin-1 particle were defined for the first
time in Ref. [3]. Here, we follow the conventions and
notations of Ref. [12], in which the GFFs of a spin-1
particle were defined as

hp0;σ0jTμνjp;σi¼ϵ�α0 ðp0;σ0Þϵαðp;σÞ
�
2PμPν

�
−ηαα0A0ðtÞþ

PαPα0

m2
A1ðtÞ

�
þ2½Pμðηνα0PαþηναPα0 ÞþPνðημα0PαþημαPα0 Þ�JðtÞ

þ1

2
ðΔμΔν−ημνΔ2Þ

�
ηαα0D0ðtÞþ

PαPα0

m2
D1ðtÞ

�

þ
�
1

2
ðημαηνα0 þημα0ηναÞΔ2−ðηνα0Δμþημα0ΔνÞPαþðηναΔμþημαΔνÞPα0−4ημνPαPα0

�
EðtÞ

�
; ð10Þ

where Δ ¼ pf − pi, P ¼ ðpf þ piÞ=2, m is the mass (note
that we reserve the symbolM for the ρ and ωmasses) of the
spin-1 particle, and the polarization vector ϵαðp; σÞ satisfies
the condition

X
σ

ϵαðp; σÞϵβðp; σÞ ¼ −ηαβ þ
pαpβ

m2
: ð11Þ

For the reader’s convenience we collect in Table I other
notations for the GFFs of spin-1 particles used in the
literature.

As the ρ-meson is an unstable particle, we extract its
gravitational form factors from the residue at the complex
double pole of the three-point correlation function of the
EMT and the vector-meson fields [53]. In this case, m2 in
the above formulas is the complex pole position of the
corresponding dressed propagator.
In the current work we consider contributions of tree-

level and one-loop diagrams to the gravitational form
factors of the ρ-meson (see Fig. 1). At tree level, there
are contributions of higher-order terms in the effective

TABLE I. Notations for GFFs of spin-1 particles used in the literature.

Reference [12] and this work A0 A1 D0 D1 J E
Holstein [3] F1 4F5 −2F2 8F6 F3 −2F4

Abidin et al. [15] A −2E C −8F Aþ B D
Taneja et al. [51] G1 −2G2 −G3 −2G4

1
2
G5 − 1

2
G6

Cosyn et al. [13] G1 −2G2 −G3 −2G4
1
2
G5 − 1

2
G6

Cosyn et al. [52] generalized form factors Aa
2;0 −2Ca

2;0 −4Fa
2 −8Ga

2
1
2
Ba
2;0 Da

2;1

TABLE II. Values of form factors at t ¼ 0.

A0ð0Þ A1ð0Þ D0ð0Þ D1ð0Þ Jð0Þ Eð0Þ
This work 1 ∼2.56þ 0.01i ∼ − 7.77 − 0.08i ∼21.4 − 6.0i 1 ∼ − 0.39 − 0.03i
[14] 1 ∼1.2 ∼0 ∼0.8 1 ∼0.15
[16] 1 ∼0.4 1 ∼ − 3.1 1 ∼0.5
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Lagrangian. As the higher-order Lagrangian is not available
yet, we include these contributions to the form factors
parametrized in the general form as polynomials of the pion
mass and the momentum transfer squared. To calculate the
loop diagrams we apply dimensional regularization and
use the program FeynCalc [54,55]. To calculate the various
expansions of the loop integrals, we apply the method
of dimensional counting of Ref. [56]. To simplify the
analytic expressions, we take M2

ω ¼ M2
R, which is a good

approximation given the accuracy of this work. Below, we
specify the chiral expansions of the form factors at t ¼ 0
and of the slope parameters and also provide expressions
for the form factors in the small-t region in the chiral limit.
Within the accuracy of our calculations, the pion mass at
leading order in the chiral expansion can be replaced by its
full expression Mπ.
The chiral expansion of the form factors at zero

momentum transfer has the form

A0ð0Þ ¼ 1;

A1ð0Þ ¼ 8v6M2
R þ XA1

M2
π þ

g2ωρπMR

48πF2
Mπ −

g2ωρπð1þ 4v6M2
RÞ

8π2F2
M2

π ln
Mπ

MR
þOðM3

πÞ;

Jð0Þ ¼ 1;

D0ð0Þ ¼ 1þ 4v1 þ 8v4M2
R þ XD0

M2
π −

ðaþ 3g2ωρπðv1 þ 2v4M2
ρÞÞ

12π2F2
M2

π ln
Mπ

MR
þOðM3

πÞ;

D1ð0Þ ¼ −8ð4v4 þ v5 þ v6ÞM2
R þ g2ωρπM3

R

60πF2

1

Mπ
þM2

Rð5g2ωρπ − 8aÞ
60π2F2

ln
Mπ

MR
þOðMπÞ;

Eð0Þ ¼ 1 − v3 − v5M2
R þ XEM2

π þ
g2ωρπMR

96πF2
Mπ þ

ðð6a3 þ 6v5M2
R − 5Þg2ωρπ − 4aÞ

96π2F2
M2

π ln
Mπ

MR
þOðM3

πÞ: ð12Þ

Here, XFi
(as well as YFi

, ZFi
, and WFi

below) are some
linear combinations of renormalized complex-valued low-
energy constants from the higher-order effective Lagrangian.
The above equations provide the dependence of the

GFFs at zero momentum transfer on the pion mass. They
can be used for extrapolations of the lattice-QCD results for
the GFFs to the physical values of the pion masses. In
recent lattice calculations of the gluon part of GFFs for the
ρ-meson [18], it was found, in particular, that the value of
D1ð0Þ is compatible with zero, albeit with large error bars
[D1ð0Þ ¼ 0.0� 0.7]. From our calculations we see that
D1ð0Þ ∼ 1=Mπ for small pion masses. This singular con-
tribution alone leads to a large value of D1ð0Þ ≈ 4 for the
physical pion mass. This value of the singular part of
the GFF, unfortunately, cannot be directly compared to the
results of the lattice simulations of Ref. [18] as only the

gluon part of the GFF Dg
1 was computed in that paper.

However, we expect that the singular ∼1=Mπ part is also
present in Dg

1ð0Þ with a slightly modified coefficient. This
suggests that the chiral extrapolation of lattice results of
Ref. [18] for the pion mass to its physical point should be
studied with great care.
For the numerical estimates we use gωρπ ¼ 1.478 from

Ref. [57] and adopt the physical values for the various
meson masses and the pion decay constant instead of
the corresponding chiral-limit values (the differences are
beyond the accuracy of our calculations); namely, we
take MR ¼ 0.775− 0.075i GeV, M ∼Mπ ¼ 0.1395 GeV,
F ∼ Fπ ¼ 0.0924 GeV, and a ¼ 2. For the unknown cou-
plings we employ, for illustrative purposes, v1 ¼ −v3 ¼
−1, v4 ¼ −v2 ¼ −v5 ¼ −v6 ¼ −1 GeV−2, and Xi ¼
Yi ¼ Zi ¼ Wi ¼ 0.

(b) (c) (d)(a)

(e) ( f ) (g) (h)

FIG. 1. Tree-level and one-loop diagrams contributing to the ρ-meson gravitational form factors. The dashed, solid, and wiggly lines
correspond to the pion, the ω-meson, and the ρ-meson, respectively. The crossed vertex denotes an insertion of the EMT.

CHIRAL THEORY OF ρ-MESON GRAVITATIONAL FORM … PHYS. REV. D 105, 016018 (2022)

016018-5



Notice that due to the ρ-meson being unstable, our
results for the form factors also take complex values for
vanishing and negative t, in contrast to the model calcu-
lations of Refs. [14,16]. Our values for the form factors at
vanishing t are given in Table II, together with the
corresponding results of Refs. [14,16]. Since our results
depend on unknown low-energy constants, this comparison
does not allow us to draw any conclusions about the
reliability of the model calculations of the quoted refer-
ences. Notice also that the real part of D0ð0Þ is negative

only because we chose to substitute v1 and v4 with
negative signs.
In Fig. 2, we plot the real and imaginary parts of our

calculated form factors for the above specified values of the
parameters.
Defining the slopes sF as the coefficients of linear terms

in the Taylor expansion of the form factors, FðtÞ ¼ Fð0Þ þ
sFtþ � � �, we obtain, for their chiral expansions, the
following results:

sA0
¼ v5

2
þ ZA0

M2
π −

g2ωρπ
64πF2MR

Mπ −
g2ωρπð6v5M2

R þ 7Þ
192π2F2M2

R
M2

π ln
Mπ

MR
þOðM3

πÞ;

sA1
¼ YA1

−
g2ωρπMR

480πF2

1

Mπ
þOðMπÞ;

sJ ¼
1

2
ðv5 þ 2v6Þ þ ZJM2

π −
17g2ωρπ þ a

1152π2F2
−

g2ωρπ
192π2F2

ln
Mπ

MR
þ 5g2ωρπ
768πF2MR

Mπ

−
g2ωρπð3v5M2

R þ 6v6M2
R − 5Þ − 2a

96π2F2M2
R

M2
π ln

Mπ

MR
þOðM3

πÞ;

sD0
¼ −4v4 −

v5
2
þ ZD0

M2
π þ

ð35þ 24iπÞa − 36g2ωρπ
1440π2F2

þ g2ωρπMR

160πF2

1

Mπ
þ 5g2ωρπ þ 4a

240π2F2
ln
Mπ

MR

þ 43g2ωρπ
3840πF2MR

Mπ þ
5g2ωρπð48v4M2

R þ 6v5M2
R þ 7Þ − 8a

960π2F2M2
R

M2
π ln

Mπ

MR
þOðM3

πÞ;

sD1
¼ YD1

þ g2ωρπM3
R

560πF2

1

M3
π
−
ð11g2ωρπ − 12aÞM2

R

840π2F2

1

M2
π
−
131g2ωρπMR

13440πF2

1

Mπ
−
35g2ωρπ þ 64a

840π2F2
ln
Mπ

MR
þOðMπÞ;

sE ¼ 1

2
ðv5 þ 2v6Þ þ ZEM2

π þ
ð35þ 12iπÞa − 92g2ωρπ

5760π2F2
−

g2ωρπMR

1920πF2

1

Mπ
þ 4a − 5g2ωρπ

960π2F2
ln
Mπ

MR

þ 19g2ωρπ
15360πF2MR

Mπ −
5v5g2ωρπM2

R þ 10v6g2ωρπM2
R þ 2a

160π2F2M2
R

M2
π ln

Mπ

MR
þOðM3

πÞ: ð13Þ

We see from the above expressions that some of the slopes have strong singularities for small pion masses. This again
underlines the need for a careful analysis of the chiral extrapolation of lattice data.
It is also instructive to study the t-dependence of GFFs in the chiral limitMπ ¼ 0. In the next section, the corresponding

results will allow us to derive the large distance asymptotics of the energy and force distributions. The expressions of the
form factors in the small-t region in the chiral limit have the form

A0ðtÞ ¼ 1þ v5
2
tþWA0

t2 þ 7g2ωρπ
4096F2MR

ð−tÞ3=2 þ 5g2ωρπ
768π2F2M2

R
t2 ln

�
−

t
M2

R

�
;

A1ðtÞ ¼ 8v6M2
R þ YA1

tþ 3g2ωρπMR

1024F2

ffiffiffiffiffi
−t

p
;

JðtÞ ¼ 1þ 1

2
ðv5 þ 2v6Þt −

9g2ωρπ þ a

1152π2F2
t −

g2ωρπ
384π2F2

t ln

�
−

t
M2

R

�
;

D0ðtÞ ¼ 1þ 4v1 þ 8v4M2
R −

�
4v4 þ

v5
2

�
t −

5g2ωρπMR

1024F2

ffiffiffiffiffi
−t

p þ 5g2ωρπ þ 4a

480π2F2
t ln

�
−

t
M2

R

�
þ 3ð7þ 40iπÞa − 200g2ωρπ

7200π2F2
t;
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FIG. 2. Real and imaginary parts of the gravitational form factors of the ρ-meson as functions of Q2 ¼ −t.
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D1ðtÞ ¼ −8ð4v4 þ v5 þ v6ÞM2
R þM2

Rð47a − 20g2ωρπÞ
450π2F2

þ 3g2ωρπM3
R

256F2

1ffiffiffiffiffi
−t

p þ ð5g2ωρπ − 8aÞM2
R

120π2F2
ln

�
−

t
M2

R

�
;

EðtÞ ¼ 1 − a3 − v5M2
R þ 1

2
ðv5 þ 2v6Þtþ

að60πi − 9Þ − 245g2ωρπ
28800π2F2

tþ g2ωρπMR

1024F2

ffiffiffiffiffi
−t

p þ 4a − 5g2ωρπ
1920π2F2

t ln

�
−

t
M2

R

�
: ð14Þ

Notice that while not all analytic (at t ¼ 0) terms can be
absorbed into renormalization of the coupling constants,
all power-counting-violating pieces are systematically
removed.

V. LARGE DISTANCE BEHAVIOR OF ENERGY
AND FORCE DISTRIBUTIONS

It is particularly interesting to look at the energy
distribution and mechanical properties such as the elastic
pressure and shear force distributions inside the ρ-meson.
These fundamental distributions are encoded in the static
EMT defined in the Breit frame as [7]

Tμνðr⃗; σ0; σÞ ¼
Z

d3Δ
ð2πÞ32Ee−iΔ⃗·r⃗hp0; σ0jT̂μν

QCDð0Þjp; σi:

ð15Þ

Here, T̂μν
QCDð0Þ is the QCD EMT operator of the matrix

element that is computed between hadron states with
spin projections σ; σ0 and momenta p0 ¼ p00 ¼ E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ Δ⃗2=4

q
, and pi0 ¼ −pi ¼ Δi=2. The 00 component

of the static EMT contains the information about the energy
distribution, the 0i components encode the spin distribu-
tion, while the ik components provide us with the dis-
tributions of elastic pressure and shear forces inside the
hadron [7].
Various components of the static EMT for hadrons with

arbitrary spin can be decomposed into multipoles of the
hadron’s spin operator. The expansion to the quadrupole
order has the following form [10–12,17]1:

T00ðrÞ ¼ ε0ðrÞ þ ε2ðrÞQ̂pqYpq
2 þ…; ð16Þ

TikðrÞ ¼ p0ðrÞδik þ s0ðrÞYik
2 þ

�
p2ðrÞ þ

1

3
p3ðrÞ −

1

9
s3ðrÞ

�
Q̂ik

þ
�
s2ðrÞ −

1

2
p3ðrÞ þ

1

6
s3ðrÞ

�
2½Q̂ipYpk

2 þ Q̂kpYpi
2 − δikQ̂pqYpq

2 �

þ Q̂pqYpq
2

��
2

3
p3ðrÞ þ

1

9
s3ðrÞ

�
δik þ

�
1

2
p3ðrÞ þ

5

6
s3ðrÞ

�
Yik
2

�
þ…: ð17Þ

Here, the ellipses denote the contributions of 2nth multi-
poles with n > 2. They are absent for a spin-1 particle. The
quadrupole operator is a ð2J þ 1Þ × ð2J þ 1Þ matrix:

Q̂ik ¼ 1

2

�
ĴiĴk þ ĴkĴi −

2

3
JðJ þ 1Þδik

�
; ð18Þ

which is expressed in terms of the spin operator Ĵi. The spin
operator can be expressed in terms of SU(2) Clebsch-
Gordan coefficients (in the spherical basis):

Ĵμσ0σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ þ 1Þ

p
CJσ0
Jσ1μ: ð19Þ

Furthermore, we introduce the irreducible (symmetric and
traceless) tensor of rank n made out of r:

Yi1i2…in
n ¼ ð−1Þn

ð2n − 1Þ!! r
nþ1∂i1…∂in

1

r
; ð20Þ

i.e.,

Y0 ¼ 1; Yi
1 ¼

ri

r
; Yik

2 ¼ rirk

r2
−
1

3
δik; etc: ð21Þ

Note that only the monopole quantities ε0ðrÞ, p0ðrÞ, and
s0ðrÞ are left after spin averaging. The functions ε0ðrÞ and
ε2ðrÞ correspond to the spin-averaged energy density
and to the quadrupole deformation of the energy density
inside the hadron, respectively. There is an obvious relationR
d3rε0ðrÞ ¼ m. Also, it is obvious that ε2ðrÞ ¼ 0 for

hadrons with spin 0 and 1=2 (that is why such hadrons
can be called spherically symmetric).
From the equilibrium condition for the stress tensor,

∂kTikðrÞ ¼ 0, one can easily obtain the equations for the
functions pnðrÞ and snðrÞ:

1In what follows, we shall suppress the hadron’s spin indices
σ; σ0 when their position is obvious. Also, we employ here the
parametrization of the static stress tensor that differs from that of
Refs. [12,17] by a simple redefinition. The corresponding
relations are given in the Appendix of Ref. [11].
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d
dr

�
pnðrÞ þ

2

3
snðrÞ

�
þ 2

r
snðrÞ ¼ 0; for n ¼ 0; 2; 3:

ð22Þ
To see the physical meaning of the quadrupole force
distributions p2;3ðrÞ and s2;3ðrÞ, it is instructive to look
at the force acting on the infinitesimal radial area element
dSr (dS⃗ ¼ dSre⃗r þ dSθe⃗θ þ dSϕe⃗ϕ). With the help of the
parametrization of Eq. (17) and the relation of the force to
the stress tensor, dFi ¼ TikdSk, we obtain

dFr

dSr
¼ p0ðrÞ þ

2

3
s0ðrÞ

þ Q̂rr

�
p2ðrÞ þ

2

3
s2ðrÞ þ p3ðrÞ þ

2

3
s3ðrÞ

�
; ð23Þ

dFθ

dSr
¼ Q̂θr

�
p2ðrÞ þ

2

3
s2ðrÞ

�
;

dFϕ

dSr
¼ Q̂ϕr

�
p2ðrÞ þ

2

3
s2ðrÞ

�
: ð24Þ

We see that in contrast to spherically symmetric hadrons,
the radial area element experiences not only normal forces
but also tangential ones. The strengths of the tangential
forces are governed by p2ðrÞ and s2ðrÞ; the quadrupole
force distributions p3ðrÞ and s3ðrÞ contribute to the spin-
dependent part of the radial force.
Using the result for the t-dependence of GFFs in

the chiral limit of Eq. (15) obtained in the previous
section, we can easily calculate the analytic expressions
for the large distance behavior (in the chiral limit) of
the energy and force distributions defined in Eqs. (16)
and (17):

ε0ðrÞ ¼
g2ωρπ

32π2F2

1

r6
−
3ð2aþ 5g2ωρπÞ
32π3F2MR

1

r7
þO

�
1

r8

�
;

ε2ðrÞ ¼
3g2ωρπ

128π2F2

1

r6
þ 21ð4a − 5g2ωρπÞ

256π3F2MR

1

r7
þO

�
1

r8

�
;

p0ðrÞ ¼ −
g2ωρπ

96π2F2

1

r6
þ ð16aþ 15g2ωρπÞ

144π3F2MR

1

r7
þO

�
1

r8

�
;

s0ðrÞ ¼
g2ωρπ

32π2F2

1

r6
−
7ð16aþ 15g2ωρπÞ
384π3F2MR

1

r7
þO

�
1

r8

�
;

p2ðrÞ ¼
g2ωρπ

32π2F2

1

r6
þ 5ð20a − 13g2ωρπÞ

192π3F2MR

1

r7
þO

�
1

r8

�
;

s2ðrÞ ¼ −
3g2ωρπ
32π2F2

1

r6
−
35ð20a − 13g2ωρπÞ

512π3F2MR

1

r7
þO

�
1

r8

�
;

p3ðrÞ ¼ −
9g2ωρπ

128π2F2

1

r6
−
7ð8a − 5g2ωρπÞ
48π3F2MR

1

r7
þO

�
1

r8

�
;

s3ðrÞ ¼
27g2ωρπ
128π2F2

1

r6
þ 49ð8a − 5g2ωρπÞ

128π3F2MR

1

r7
þO

�
1

r8

�
: ð25Þ

In Refs. [8,9,58] it was conjectured that for the stability of a
mechanical system, the spin-averaged pressure and shear
forces should satisfy the inequality

2

3
s0ðrÞ þ p0ðrÞ ≥ 0; ð26Þ

which corresponds to positivity of the radial pressure. From
the derived large distance behavior of the p0ðrÞ and s0ðrÞ,
we see that the inequality Eq. (26) is indeed satisfied.
However, the ρ-meson decays in our theory. The terms
in the large distance expansion (25) which “know” about
the instability of the particle are proportional to the ρππ
coupling constant squared ∼a. It is interesting to note that
the corresponding terms violate the stability condition of
Eq. (26); also, the corresponding terms in the spin-averaged
energy density ε0ðrÞ violate its positivity. A detailed study
of the relations between mechanical stability conditions and
the decay of unstable particles will be given elsewhere.

VI. SUMMARY

To summarize, we have applied chiral EFT to vector
mesons and Goldstone bosons in the presence of an
external gravitational field. Using standard definitions, we
obtained the expressions of the EMT in the flat background
metric. As first noticed in Ref. [43], terms in the effective
Lagrangian involving the gravitational curvature, which
vanishes in the flat background, give nontrivial contribu-
tions to the EMT. This also happens for the case at hand.
Therefore, in order to keep track of all relevant contributions
to the EMT in flat space-time, it is necessary to consider the
effective Lagrangian in curved space-time. In the next step,
we calculated the gravitational form factors of the ρ-meson
at next-to-leading order. This involved the calculation of
tree-level and one-loop diagrams. To get rid of ultraviolet
divergences and power-counting-violating pieces, we
applied the complex-mass renormalization scheme, which
allows one to also subtract the large imaginary parts from
loop diagrams. Thematrix element of the EMT for this spin-
1 hadron is parametrized using six independent structures.
We do not give the rather lengthy expressions of the obtained
expressions of the gravitational form factors of the ρ-meson
in terms of standard loop functions,2 but focus on the chiral
expansion of the form factors at zeromomentum transfer and
of their slopes. These expressions should be useful for lattice
extrapolations of the corresponding results by taking the
pion mass to its physical value. We also presented the
expansion of the form factors in the small-t region in
the chiral limit. Using these expressions, we further calcu-
lated the large-distance behavior of the energy distribution
and the internal forces. The obtained results are consistent
with the stability condition of a mechanical system.

2These are available from the authors upon request.
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