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We show that the matrix element of a local operator between hadronic states can be used to
unambiguously define the associated spatial density. As an explicit example, we consider the charge
density of a spinless particle and clarify its relationship to the electric form factor. Our results lead to an
unconventional interpretation of the spatial densities of local operators and their moments.
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Introduction.—It is often claimed that the electric charge
density of the nucleon is given by the three-dimensional
Fourier transform of its electric form factor in the Breit
frame [1–3]. Similar relations have been suggested for
Fourier transforms of gravitational form factors and various
local distributions in Refs. [4–6].
The identification of spatial density distributions with the

Fourier transform of the corresponding form factors for
systems whose intrinsic size is comparable with the
Compton wavelength was criticized in Refs. [7–14]. In
particular, Miller pointed out that the derivation of the
conventional relationship between the charge density and
the electric form factor in the Breit frame by Sachs [3]
implicitly assumes delocalizedwave packet states [12]. This
would result inmoments of the charge distribution governed
by the size of the wave packet rather than the intrinsic
properties of the system encoded in the form factor.
The definition of the charge density distribution for a

spin-0 system was further scrutinized by Jaffe [11] in
relationship to three characteristic length scales: the scaleΔ
set by the form factor slope, Δ2 ¼ 2dF0ðq2Þjq2¼0 with d
being the number of spatial dimensions, the characteristic
size of the wave packet R and the Compton wavelength
1=m. Using a Gaussian wave packet and an approximate
expression for the charge distribution, Jaffe concluded that
the interpretation of the Fourier transformed form factor as
the intrinsic charge density is not valid for light hadrons and

argued that local density distributions cannot even be
defined independent of the form of the wave packet for
systems with Δ ∼ 1=m.
In this Letter, we revisit the definition of the charge

density for spin-0 systems. We closely follow the logic and
conventions of Ref. [11], but we make no approximations
to evaluate the charge density in a general wave packet
state. Using spherically symmetric wave packets in the zero
average momentum frame (ZAMF) of the system, we show
that the charge density can be defined unambiguously for
sharply localized packets. For wave packets with a sharp
localization in momentum space, the ZAMF coincides with
the rest frame of the system. We then generalize the
definition to moving frames and show that in the infin-
ite-momentum frame (IMF), the charge density turns into
the well-known two-dimensional distribution in the trans-
verse plane. We also discuss the relationship between the
radial moments of the charge density and the form factor.
The charge density in the ZAMF.—Following Ref. [11],

we consider, for the sake of definiteness, a spin-0 system.
Notice, however, that spin plays no special role in the
analysis below, which we expect to be applicable to any
localizable quantum system. We assume that the system is
an eigenstate of the charge operator Q̂ ¼ R

d3rρ̂ðr; 0Þ,
Q̂jpi ¼ Qjpi, where ρ̂ðr; 0Þ is the electric charge density
operator at t ¼ 0 in the Heisenberg picture, and we take
Q ¼ 1 for definiteness. The momentum eigenstates jpi are
normalized in the usual way,

hp0jpi ¼ 2Eð2πÞ3δð3Þðp0 − pÞ; ð1Þ

with p ¼ ðE;pÞ, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. Using translational

invariance, the matrix elements of ρ̂ðr; 0Þ between momen-
tum eigenstates of a spin-0 system can be written as
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hp0jρ̂ðr; 0Þjpi ¼ e−iðp0−pÞ·rðEþ E0ÞFðq2Þ; ð2Þ

where Fðq2Þ is the electric form factor and q ¼ p0 − p
denotes the momentum transfer.
Next, we define a normalizable Heisenberg-picture state

of the system with the center-of-mass position X in terms
of the wave packet

jΦ;Xi ¼
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eð2πÞ3

p ϕðpÞe−ip·Xjpi; ð3Þ

where the profile function ϕðpÞ is required to satisfy

Z
d3pjϕðpÞj2 ¼ 1 ð4Þ

in order to ensure the proper normalization of the wave
packet. For later use, we define a dimensionless profile
function ϕ̃ via

ϕðpÞ ¼ R3=2ϕ̃ðRpÞ; ð5Þ

where R denotes the characteristic size of the wave packet
with R → 0 corresponding to a sharp localization. The
charge density distribution in this state, defined as the
matrix element of the electric charge density operator, has
the form

hΦ;Xjρ̂ðr; 0ÞjΦ;Xi ¼
Z

d3pd3p0

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
4EE0p ðEþ E0ÞFðq2Þ

× ϕ⋆ðp0ÞϕðpÞeiq·ðX−rÞ; ð6Þ

where q ¼ p0 − p and q2 ¼ ðE0 − EÞ2 − q2. Without loss
of generality we choose X ¼ 0. Finally, introducing the
total and relative momentum variables via p ¼ P − q=2
and p0 ¼ Pþ q=2, the charge density is written as

ρϕðrÞ≡ hΦ; 0jρ̂ðr; 0ÞjΦ; 0i

¼
Z

d3Pd3q

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffi
4EE0p ðEþ E0ÞF½ðE − E0Þ2 − q2�

× ϕ

�
P −

q
2

�
ϕ⋆

�
Pþ q

2

�
e−iq·r; ð7Þ

where the energies are E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2 − P · qþ q2=4

p
and E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2 þ P · qþ q2=4

p
.

The traditional (“naive”) interpretation of the charge
density in terms of the Fourier transform of the form factor
in the Breit frame, Fðq2Þ ¼ Fð−q2Þ, emerges by first
taking the static limit (i.e., m → ∞) resulting in the
replacement E ¼ E0 ¼ m in the integrand in Eq. (7),

ρϕ;naiveðrÞ ¼
Z

d3Pd3q
ð2πÞ3 ϕ

�
P −

q
2

�
ϕ⋆

�
Pþ q

2

�
× Fð−q2Þe−iq·r; ð8Þ

and subsequently localizing the wave packet by taking the
limit R → 0 [11]. This can be done without specifying the
functions Fðq2Þ and ϕðpÞ using the method of dimensional
counting [15] or, alternatively, the strategy of regions [16].
For Fðq2Þ decreasing at large q2 faster than 1=q2, the only
nonvanishing contribution to ρϕ;naiveðrÞ in the R → 0 limit
is obtained by substituting P ¼ P̃=R, expanding the inte-
grand in Eq. (8) in R around R ¼ 0, and keeping the zeroth
order term. The resulting naive charge density has the
familiar form

ρnaiveðrÞ ¼
Z

d3P̃d3q
ð2πÞ3 Fð−q2Þjϕ̃ðP̃Þj2e−iq·r

¼
Z

d3q
ð2πÞ3 Fð−q

2Þe−iq·r; ð9Þ

where in the second equality we made use of Eq. (4). Here
and in what follows, r≡ jrj. We have dropped the subscript
ϕ to indicate that the above expression is independent of the
wave packet shape.
On the other hand, the method of dimensional counting

allows one to take the R → 0 limit in Eq. (7) without
employing the static approximation. Following the same
steps as before but for arbitrary m, we obtain

ρϕðrÞ ¼
Z

d3P̃d3q
ð2πÞ3 F

�ðP̃ · qÞ2
P̃2

− q2

�
jϕ̃ðP̃Þj2e−iq·r: ð10Þ

The resulting density depends on the shape of the wave
packet unless it is spherically symmetric. Since there is no
preferred direction in the ZAMF of the system, we define
the charge density distribution in the ZAMF by employing
spherically symmetric wave packets with ϕ̃ðP̃Þ ¼ ϕ̃ðjP̃jÞ
only. Then, using spherical coordinates to perform the
integration over P̃ in Eq. (10), we arrive at the final form of
the charge density distribution in the ZAMF of a particle

ρðrÞ ¼
Z

d3q
ð2πÞ3 e

−iq·r
Z þ1

−1
dα

1

2
F½ðα2 − 1Þq2�: ð11Þ

While it is argued in Ref. [11] that the traditional result
ρnaiveðrÞ is valid for the hierarchy of scales Δ ≫ 1=m,
comparing the approximate and exact expressions in
Eqs. (9) and (11), respectively, shows that the accuracy
of the static approximation leading to ρnaiveðrÞ does not
depend upon the particle mass m. It is also clear that the
validity of Eq. (11), which provides an unambiguous
relationship between the matrix element of the local charge
density operator ρ̂ðr; 0Þ in a quantum system and the
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experimentally measurable form factor Fðq2Þ, does not
depend on the relation between the intrinsic size of the
system Δ and its Compton wavelength 1=m (in contrast to
what is claimed in Ref. [11]).
Discussion.—A striking feature of the obtained result for

ρðrÞ is its independence of the particle’s mass. This implies
that the traditional expression for the charge density,
ρnaiveðrÞ, does not emerge from ρðrÞ by taking the static
limit: ρnaiveðrÞ ≠ limm→∞ ρðrÞ. At first glance, this seems
puzzling as one expects the conventional static result to be a
better approximation for heavy systems like atoms or
atomic nuclei [11,12]. The reason for this mismatch is
the noncommutativity of the R → 0 and m → ∞ limits of
ρϕðrÞ in Eq. (7), as implicitly shown in Figs. 1–3 of
Ref. [11]. While the static limit and, more generally, the
nonrelativistic approximation is perfectly valid when cal-
culating the form factor in Eq. (2) provided −q2 ≪ m2, it is
violated in certain momentum regions when performing the
integration in Eq. (7).
To have a simple example demonstrating the noncom-

mutativity of the m → ∞ and R → 0 limits consider the
wave packet in one spatial dimension with

ϕðpÞ ¼
ffiffiffiffiffiffi
2R
π

r
1

1þ R2p2
; ð12Þ

and the form factor

Fðq20 − q2Þ ¼ 2

2 − Δ2ðq20 − q2Þ ; ð13Þ

so that Fð0Þ ¼ 1 and F0ð0Þ ¼ Δ2=2. We calculate the
second order moment of the charge distribution using
the version of Eq. (7) in one spatial dimension,

hx2iϕ ¼
Z þ∞

−∞
dxx2

Z þ∞

−∞

dPdq

2π
ffiffiffiffiffiffiffiffiffiffi
4EE0p ðEþ E0Þ

× F½ðE − E0Þ2 − kq2�ϕ
�
P −

q
2

�
ϕ⋆

�
Pþ q

2

�
e−iqx:

ð14Þ

For demonstration purposes, we have introduced a control
parameter k to be set to k ¼ 1 in the final result. The
integral in Eq. (14) can be easily calculated by writing the
factors of x as derivatives acting on the exponential
function. The resulting expression has the form

hx2iϕ ¼ kΔ2 −
Δ2

ð1þmRÞ2 þ
R2

2
−

R
4mð1þmRÞ3 : ð15Þ

Taking the limit R → 0 in Eq. (15) leads to

hx2i ¼ ðk − 1ÞΔ2 ¼ 0; ð16Þ

which does not depend on the mass m. On the other hand,
taking first the static limit m → ∞ and subsequently the
R → 0 limit we obtain a different result

hx2inaive ¼ kΔ2 ¼ Δ2: ð17Þ

The method of dimensional counting reproduces exactly
Eq. (16), while Eq. (17) is obtained by first taking the static
limit in the integrand of Eq. (14).
We now turn to the interpretation of our result in

Eq. (11). Clearly, the dependence of ρðrÞ on the angle-
averaged form factor 1

2

Rþ1
−1 dαF½ðα2 − 1Þq2� rather than the

Breit frame expression Fð−q2Þ affects the radial profile of
the charge density. To quantify the magnitude of this effect,
we compare in Fig. 1 ρðrÞ and ρnaiveðrÞ for a charged and a
neutral particle. For illustrative purposes we employ
here simple parametrizations of the form factors, namely
the dipole proton form factor Fpðq2Þ ¼ GDðq2Þ ¼ ð1 −
q2=Λ2Þ−2 with Λ2 ¼ 0.71 GeV2 for a charged scalar
particle and the Galster-type parametrization of the neutron
form factor from Ref. [17], Fnðq2Þ ¼ Aτ=ð1þ BτÞGDðq2Þ
with τ ¼ −q2=ð4m2

pÞ, A ¼ 1.70, and B ¼ 3.30, for a
neutral scalar particle.
To gain further insights into the relationship between the

charge density and the form factor it is instructive to rewrite
Eq. (11) in coordinate independent form as

ρðrÞ ¼ 1

4π

Z
d2n̂ρn̂ðrÞ; ð18Þ

where n̂≡ n=jnj is a unit vector and

FIG. 1. Radial charge density distributions 4πr2ρðrÞ (solid
lines) and 4πr2ρnaiveðrÞ (dashed lines) for a charged and a neutral
spin-0 particle using the dipole and Galster-type parametrizations
of the electric form factors, respectively.
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ρn̂ðrÞ ¼
Z

d3q
ð2πÞ3 Fð−q

2⊥Þe−iq·r ¼ ρn̂ðrkÞρn̂ðr⊥Þ: ð19Þ

Here, q⊥ ¼ n̂ × ðq × n̂Þ, r⊥ ¼ n̂ × ðr × n̂Þ, rk ¼ r · n̂,
r⊥ ≡ jr⊥j, and the one- and two-dimensional densities in
the n̂ and r⊥ directions are given by

ρn̂ðrkÞ ¼
Z

dqk
2π

e−iqkrk ¼ δðrkÞ;

ρn̂ðr⊥Þ ¼
Z

d2q⊥
ð2πÞ2 Fð−q

2⊥Þe−iq⊥·r⊥ ; ð20Þ

with qk ¼ q · n̂. These expressions establish a geometric
interpretation of ρðrÞ to be discussed below and explain the
squeezing of the radial charge density relative to the naive
result as shown in Fig. 1.
To further elaborate on this point we compute radial

moments of the charge distributions in d ∈ N spatial
dimensions. We start with the inverse Fourier transform
of Eq. (9)

Fð−q2Þ ¼
Z

ddrρnaiveðrÞeiq·r: ð21Þ

Taking the kth derivative of this expression at −q2 ¼ 0,

FðkÞð0Þ, we find for hr2kiðdÞnaive ≡
R
ddrρnaiveðrÞr2k:

hr2kiðdÞnaive ¼
22kΓðd=2þ kÞ

Γðd=2Þ FðkÞð0Þ: ð22Þ

For d ¼ 3, this reduces to the well-known expression

hr2kinaive ¼
ð2kþ 1Þ!

k!
FðkÞð0Þ: ð23Þ

On the other hand, using Eqs. (18)–(20) generalized to d
dimensions and noting that hr2kiðdÞn̂ ≡ R

ddrρn̂ðrÞr2k does
not depend of n̂, we obtain for d ≥ 2

hr2kiðdÞ ¼ hr2kiðd−1Þnaive ; ð24Þ

so that in d ¼ 3 spatial dimensions,

hr2ki ¼ 22kk!FðkÞð0Þ; ð25Þ

see Ref. [18] for a related discussion. Notice further that in
one spatial dimension, ρðrÞ ¼ δðrÞ independently of the
form factor. This explains the vanishing result for the
second moment in the considered one-dimensional exam-
ple, see Eq. (16). The vanishing argument of the form factor
in the one-dimensional variant of Eq. (10) implies that for
d ¼ 1, ρðrÞ probes only the total charge Fð0Þ and not the
internal structure of the system encoded in Fðq2Þ.

The charge density in moving frames.—While the static
approximation ρnaiveðrÞ does not depend on the frame, the
expressions for ρðrÞ in Eqs. (11) and (18) are valid in the
ZAMF of the system. It is straightforward to generalize
these results to a boosted frame.
We start with the general expression for ρϕðrÞ in Eq. (7)

and replace ϕðpÞ with ϕvðpÞ, where v denotes the boost
velocity. Differently to ϕðpÞ, we cannot regard the function
ϕvðpÞ to be spherically symmetric. Thus, we need to
express ϕvðpÞ in terms of the quantity ϕðpÞ defined in
the ZAMF in order to obtain a wave packet independent
definition for the charge density in the R → 0 limit. Using
Eq. (3) and the Lorentz transformation properties of the
momentum eigenstates jpi, one finds [19]

ϕvðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ

�
1 −

v · p
E

�s
ϕ½p⊥ þ γðpk − vEÞ�; ð26Þ

where γ ¼ ð1 − v2Þ−1=2, pk ¼ ðp · v̂Þv̂, p⊥ ¼ p − pk, and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
. We note in passing that Eq. (26) ensures

the invariance of the normalization of the wave packet [19].
Then, following the same steps as in the case of the ZAMF
and using the method of dimensional counting to evaluate
the R → 0 limit we arrive at

ρϕ;vðrÞ ¼
Z

d3P̃d3q
ð2πÞ3

γðP̃ − v · P̃Þ
P̃

F

�ðP̃ · qÞ2
P̃2

− q2

�
× jϕ̃½P̃⊥ þ γðP̃k − vP̃Þ�j2e−iq·r; ð27Þ

where P̃≡ jP̃j. We now change the integration variable
P̃ → P̃0 ¼ P̃⊥ þ γðP̃k − vP̃Þ. Using the relations P̃k ¼
γðP̃0

k þ vP̃0Þ and P̃ ¼ γðP̃0 þ vP̃0
kÞ, it is easy to verify that

the Jacobian of the change of variables P̃ → P̃0 cancels the
first factor in the integrand in Eq. (27), yielding

ρϕ;vðrÞ ¼
Z

d3P̃0d3q
ð2πÞ3 jϕ̃ðP̃0Þj2e−iq·r

×F

�½P̃0⊥ ·q⊥þ γðP̃0
k þ vP̃0Þ ·qk�2

γ2ðP̃0 þvP̃0
kÞ2

−q2

�
: ð28Þ

Using Eq. (4) and the spherical symmetry of ϕ̃ðP̃0Þ, the
integration over P̃0 becomes trivial. The remaining angular

integration over ˆ̃P
0
can be done in spherical coordinates.

We align the z and x axes along the v and q⊥ directions,
respectively, and denote η ¼ cos θ. Our final result then
reads

ρvðrÞ ¼
Z

d3q
ð2πÞ3 F̄ðqk; q⊥Þe

−iq·r; ð29Þ

with qk ≡ v̂ · q, q⊥ ≡ jq⊥j and
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F̄ðqk;q⊥Þ ¼
1

4π

Z þ1

−1
dη

Z
2π

0

dϕ

×F

�½ ffiffiffiffiffiffiffiffiffiffiffiffi
1− η2

p
cosϕq⊥þ γðηþvÞqk�2
γ2ð1þvηÞ2 −q2

�
:

ð30Þ

In the IMF with v → 1 and γ → ∞, the charge density turns
into the usual two-dimensional distribution in the trans-
verse plane, ρIMFðrÞ ¼ δðrkÞρIMFðr⊥Þ with

ρIMFðr⊥Þ ¼
Z

d2q⊥
ð2πÞ2 Fð−q

2⊥Þe−iq⊥·r⊥ : ð31Þ

One can also verify that Eq. (29) reduces to the ZAMF
expression in Eq. (11) in the limit v → 0, albeit this
relationship appears somewhat obscured.
Again, it is instructive to rewrite Eqs. (29) and (30) in a

coordinate independent form similar to the ZAMF expres-

sions in Eqs. (18)–(20). We introduce a unit vector m̂≡ ˆ̃P
0

and define a vector valued function

nðv; m̂Þ ¼ v̂ × ðm̂ × v̂Þ þ γðm̂ · v̂ þ vÞv̂: ð32Þ

Then, the charge density ρvðrÞ can be written as

ρvðrÞ ¼
1

4π

Z
d2m̂ρn̂ðv;m̂ÞðrÞ; ð33Þ

where ρn̂ðv;m̂ÞðrÞ≡ ρn̂ðrÞ is defined in Eqs. (19) and (20).
In this form, both extreme limits for the boosting velocity
become particularly transparent by using the relations

n̂ðv; m̂Þ⟶v→0
m̂ and n̂ðv; m̂Þ⟶v→1

v̂, leading evidently to
Eqs. (18) and (31), respectively.
The interpretation of the obtained results follows directly

from the corresponding coordinate independent expres-
sions. In the ZAMF, Eqs. (18)–(20) show that ρðrÞ is given
by a continuous (isotropic) superposition of the two-
dimensional “images” of the system, ρIMFðrÞ, made in
all possible IMFs. It is intuitively clear that the full image of
a three-dimensional object can be reconstructed by putting
together all possible two-dimensional projections. In mov-
ing frames, the averaging over the infinite momentum
directions in Eq. (33) becomes anisotropic, reflecting a
preferred direction set by the velocity v.
This geometric picture also provides an interpretation of

the peculiar result ρðrÞ ¼ δðrÞ in one spatial dimension.
The (d − 1)-dimensional projections simply do not exist for
d ¼ 1, and ρðrÞ thus loses the information about the
structure of the object. Nevertheless, the formal result
ρðrÞ ¼ δðrÞ for d ¼ 1 constitutes a consistency check of
our work. Indeed, given that the condition for the profile
function ϕðpÞ to be spherically symmetric drops out for
d ¼ 1, the same definition of the charge density should

hold in the ZAMF and moving frames, making ρvðrÞ frame
independent. This then leads to ρðrÞ ¼ δðrÞ as the only
possibility compatible with the obvious IMF result.
Last but not least, we emphasize that radial moments of

the charge distribution are, in fact, frame independent, i.e.,
hr2kiv ¼ hr2ki, in spite of ρvðrÞ being not spherically
symmetric for v ≠ 0. This remarkable feature follows from
Eq. (33) by noting that

R
d3rρn̂ðv;m̂ÞðrÞr2k does not depend

on v and m̂. It can also be verified by showing that radial
moments of ρϕðrÞ in Eq. (10) do not depend on ϕ̃ðP̃Þ even
if this function is not spherically symmetric.
Summary and conclusions.—In summary, we introduced

an unambiguous definition of a spatial distribution of the
expectation values of local operators in spin-0 systems
independent of the specific form of the wave packet in
which the state was prepared. Our definition also applies to
systems whose intrinsic size is comparable or even smaller
than the Compton wavelength. We found remarkably
simple relationships between the electric form factor and
the charge density in the ZAMF and moving frames,
thereby reproducing the well-known result in the IMF.
We have also demonstrated that radial moments of the
charge distribution are frame independent.
Our results suggest an unconventional interpretation of

the form factors in terms of the charge density. In particular,
Eq. (11) implies that the second moment of ρðrÞ is related
to the form factor slope via hr2i ¼ 4F0ð0Þ in contrast to the
usual relationship hr2inaive ¼ 6F0ð0Þmotivated by the Breit
frame distribution ρnaiveðrÞ. Our results show that the
approximation ρnaiveðrÞ does not emerge in the static limit
of the exact expression for ρðrÞ, and its accuracy is
independent of the particle’s mass.
We note that for heavy systems with ðmΔÞ−1 ≡ ϵ ≪ 1,

one may alternatively attempt to define ρðrÞ using wave
packets with ϵ ≪ ðmRÞ−1 ≪ 1 as suggested in [11], by
choosing, e.g., ðmRÞ−1 ∼Oðϵ1=2Þ. While this leads to an
unambiguous definition of the charge density in the static
limit ϵ → 0 with ρðrÞ → ρnaiveðrÞ, corrections beyond this
limit are wave packet dependent.
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