000911113 001__ 911113
000911113 005__ 20240712113150.0
000911113 0247_ $$2doi$$a10.1002/er.8624
000911113 0247_ $$2ISSN$$a0363-907X
000911113 0247_ $$2ISSN$$a1099-114X
000911113 0247_ $$2Handle$$a2128/33595
000911113 0247_ $$2WOS$$aWOS:000849660500001
000911113 037__ $$aFZJ-2022-04439
000911113 082__ $$a620
000911113 1001_ $$0P:(DE-HGF)0$$aGholami, Nahid$$b0
000911113 245__ $$aA Data‐Driven framework for prediction the cyclic voltammetry and polarization curves of polymer electrolyte fuel cells using artificial neural networks
000911113 260__ $$aLondon [u.a.]$$bWiley-Intersience$$c2022
000911113 3367_ $$2DRIVER$$aarticle
000911113 3367_ $$2DataCite$$aOutput Types/Journal article
000911113 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673846189_7467
000911113 3367_ $$2BibTeX$$aARTICLE
000911113 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911113 3367_ $$00$$2EndNote$$aJournal Article
000911113 520__ $$aThe primary goal of this research is to predict the cyclic voltammetry and polarization curves of proton exchange membrane fuel cells (PEMFC) without conducting any experiments. For the first time ever, artificial neural network (ANN) is applied to introduce a framework for PEMFC that is composed of various catalyst layers. Carbon-based cathode materials, such as reduced graphene oxide, graphene oxide, graphene nanoplatelets, and carbon black and their hybrids, including various Pt catalyst content, are being investigated. Important properties of cathode materials, such as surface area, Pt percentage, and Pt nanoparticle size were investigated for the classification of various groups. Results showed that total cathode surface area and Pt content are suitable for more precise data classification and are selected as input variables (features), whereas electrochemically active surface area, cyclic voltammetry, and polarization curves are selected as output responses of ANN. In this framework, experimental data for various cathode materials is initially classified using support vector machines and then ANN models are applied to predict the cyclic voltammetry and polarization curves. Results indicate that data are well classified into four main groups, allowing an ANN to achieve the best prediction of curves with a mean square error of less than 0.3% and a relative error of 0.5%. Also, with the help of the polarization curve, the maximum production power vs different voltages can be evaluated. By applying this model, it will be possible to get the necessary electrochemical data for an unknown carbon-based cathode material of a PEMFC. Finally, ANN applications can be proposed as a useful tool for predicting the main cyclic voltammetry and polarization curves of fuel cells.
000911113 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000911113 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911113 7001_ $$0P:(DE-HGF)0$$aYasari, Elham$$b1
000911113 7001_ $$0P:(DE-HGF)0$$aFarhadian, Nafiseh$$b2$$eCorresponding author
000911113 7001_ $$0P:(DE-Juel1)181057$$aMalek, Kourosh$$b3$$eCorresponding author
000911113 773__ $$0PERI:(DE-600)1480879-1$$a10.1002/er.8624$$gp. er.8624$$n15$$p20916-20927$$tInternational journal of energy research$$v46$$x0363-907X$$y2022
000911113 8564_ $$uhttps://juser.fz-juelich.de/record/911113/files/Intl%20J%20of%20Energy%20Research%20-%202022%20-%20Gholami%20-%20A%20Data%E2%80%90Driven%20framework%20for%20prediction%20the%20cyclic%20voltammetry%20and%20polarization.pdf$$yRestricted
000911113 8564_ $$uhttps://juser.fz-juelich.de/record/911113/files/Kourosh_Supporting%202.docx$$yPublished on 2022-09-04. Available in OpenAccess from 2023-09-04.
000911113 8564_ $$uhttps://juser.fz-juelich.de/record/911113/files/Kourosh_Tables.docx$$yPublished on 2022-09-04. Available in OpenAccess from 2023-09-04.
000911113 8564_ $$uhttps://juser.fz-juelich.de/record/911113/files/Kourosh_figures.docx$$yPublished on 2022-09-04. Available in OpenAccess from 2023-09-04.
000911113 8564_ $$uhttps://juser.fz-juelich.de/record/911113/files/Kourosh_rev%2010-200%20word%20abstract.docx$$yPublished on 2022-09-04. Available in OpenAccess from 2023-09-04.
000911113 909CO $$ooai:juser.fz-juelich.de:911113$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911113 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181057$$aForschungszentrum Jülich$$b3$$kFZJ
000911113 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000911113 9141_ $$y2022
000911113 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000911113 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-03$$wger
000911113 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000911113 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000911113 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J ENERG RES : 2021$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-30
000911113 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-30
000911113 920__ $$lyes
000911113 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000911113 9801_ $$aFullTexts
000911113 980__ $$ajournal
000911113 980__ $$aVDB
000911113 980__ $$aUNRESTRICTED
000911113 980__ $$aI:(DE-Juel1)IEK-13-20190226
000911113 981__ $$aI:(DE-Juel1)IET-3-20190226