001     911113
005     20240712113150.0
024 7 _ |a 10.1002/er.8624
|2 doi
024 7 _ |a 0363-907X
|2 ISSN
024 7 _ |a 1099-114X
|2 ISSN
024 7 _ |a 2128/33595
|2 Handle
024 7 _ |a WOS:000849660500001
|2 WOS
037 _ _ |a FZJ-2022-04439
082 _ _ |a 620
100 1 _ |a Gholami, Nahid
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A Data‐Driven framework for prediction the cyclic voltammetry and polarization curves of polymer electrolyte fuel cells using artificial neural networks
260 _ _ |a London [u.a.]
|c 2022
|b Wiley-Intersience
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1673846189_7467
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The primary goal of this research is to predict the cyclic voltammetry and polarization curves of proton exchange membrane fuel cells (PEMFC) without conducting any experiments. For the first time ever, artificial neural network (ANN) is applied to introduce a framework for PEMFC that is composed of various catalyst layers. Carbon-based cathode materials, such as reduced graphene oxide, graphene oxide, graphene nanoplatelets, and carbon black and their hybrids, including various Pt catalyst content, are being investigated. Important properties of cathode materials, such as surface area, Pt percentage, and Pt nanoparticle size were investigated for the classification of various groups. Results showed that total cathode surface area and Pt content are suitable for more precise data classification and are selected as input variables (features), whereas electrochemically active surface area, cyclic voltammetry, and polarization curves are selected as output responses of ANN. In this framework, experimental data for various cathode materials is initially classified using support vector machines and then ANN models are applied to predict the cyclic voltammetry and polarization curves. Results indicate that data are well classified into four main groups, allowing an ANN to achieve the best prediction of curves with a mean square error of less than 0.3% and a relative error of 0.5%. Also, with the help of the polarization curve, the maximum production power vs different voltages can be evaluated. By applying this model, it will be possible to get the necessary electrochemical data for an unknown carbon-based cathode material of a PEMFC. Finally, ANN applications can be proposed as a useful tool for predicting the main cyclic voltammetry and polarization curves of fuel cells.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yasari, Elham
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Farhadian, Nafiseh
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Malek, Kourosh
|0 P:(DE-Juel1)181057
|b 3
|e Corresponding author
773 _ _ |a 10.1002/er.8624
|g p. er.8624
|0 PERI:(DE-600)1480879-1
|n 15
|p 20916-20927
|t International journal of energy research
|v 46
|y 2022
|x 0363-907X
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/911113/files/Intl%20J%20of%20Energy%20Research%20-%202022%20-%20Gholami%20-%20A%20Data%E2%80%90Driven%20framework%20for%20prediction%20the%20cyclic%20voltammetry%20and%20polarization.pdf
856 4 _ |y Published on 2022-09-04. Available in OpenAccess from 2023-09-04.
|u https://juser.fz-juelich.de/record/911113/files/Kourosh_Supporting%202.docx
856 4 _ |y Published on 2022-09-04. Available in OpenAccess from 2023-09-04.
|u https://juser.fz-juelich.de/record/911113/files/Kourosh_Tables.docx
856 4 _ |y Published on 2022-09-04. Available in OpenAccess from 2023-09-04.
|u https://juser.fz-juelich.de/record/911113/files/Kourosh_figures.docx
856 4 _ |y Published on 2022-09-04. Available in OpenAccess from 2023-09-04.
|u https://juser.fz-juelich.de/record/911113/files/Kourosh_rev%2010-200%20word%20abstract.docx
909 C O |o oai:juser.fz-juelich.de:911113
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)181057
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J ENERG RES : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21