000911141 001__ 911141
000911141 005__ 20240712084621.0
000911141 0247_ $$2doi$$a10.1016/j.apgeochem.2022.105207
000911141 0247_ $$2ISSN$$a0883-2927
000911141 0247_ $$2ISSN$$a1872-9134
000911141 0247_ $$2Handle$$a2128/32459
000911141 0247_ $$2WOS$$aWOS:000798069300006
000911141 037__ $$aFZJ-2022-04457
000911141 082__ $$a550
000911141 1001_ $$00000-0001-5784-996X$$aDeng, Hang$$b0$$eCorresponding author
000911141 245__ $$aA reactive transport modeling perspective on the dynamics of interface-coupled dissolution-precipitation
000911141 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2022
000911141 3367_ $$2DRIVER$$aarticle
000911141 3367_ $$2DataCite$$aOutput Types/Journal article
000911141 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1667907077_13121
000911141 3367_ $$2BibTeX$$aARTICLE
000911141 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911141 3367_ $$00$$2EndNote$$aJournal Article
000911141 520__ $$aIn interface coupled dissolution-precipitation systems, the dynamics of the mineral-fluid interface depends on two intertwining processes: the dissolution of the primary mineral that is needed for subsequent precipitation and the passivation of the dissolution reaction as a result of secondary mineral precipitation. The resulting thickness and texture of the precipitating coating layer will affect the progression of geochemical reactions, flow and transport processes at the macroscopic scale. Understanding the interplay between macroscopic flow regimes and microscopic reaction mechanisms (e.g., nucleation and crystal growth pathways) in controlling the dynamics of the mineral-fluid interface has important implications for predicting natural weathering processes, scaling in the subsurface energy production systems, etc. In this study, we use a micro-continuum pore-scale reactive transport model to investigate the feedback loop between reaction rate and solute transport with explicit consideration of the surface passivation and the diffusion process through the coating layer, as well as the impacts of saturation-dependent nucleation rate on the textures of precipitates that will largely dictate the diffusion properties of the coating layer. Our model results highlight that the drastically different coating behaviors at the macroscopic scale and their dependence on solution supersaturation observed in previous column experiments are primarily controlled by the interplay between mineral reaction rates, advective flow, and diffusion through the dynamically forming coating layer. The diffusion properties of the coating layer also play a secondary but non-negligible role in shaping the evolution of the co-dissolution and precipitation system. The probabilistic nucleation model building on the framework of classical nucleation theory highlights the complex dependence of precipitates’ texture on solution chemistry and substrate properties, which can affect the diffusion process within the precipitates. The modeling observations also underscore the necessity of further investigations to better characterize the properties of the coating layer and to improve modeling descriptions of the nucleation processes.
000911141 536__ $$0G:(DE-HGF)POF4-1411$$a1411 - Nuclear Waste Disposal (POF4-141)$$cPOF4-141$$fPOF IV$$x0
000911141 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911141 7001_ $$0P:(DE-Juel1)169154$$aPoonoosamy, Jenna$$b1$$ufzj
000911141 7001_ $$00000-0001-7675-3218$$aMolins, Sergi$$b2
000911141 773__ $$0PERI:(DE-600)1499242-5$$a10.1016/j.apgeochem.2022.105207$$gVol. 137, p. 105207 -$$p105207 -$$tApplied geochemistry$$v137$$x0883-2927$$y2022
000911141 8564_ $$uhttps://juser.fz-juelich.de/record/911141/files/Deng%20et%20al%202022.pdf$$yOpenAccess
000911141 909CO $$ooai:juser.fz-juelich.de:911141$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911141 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169154$$aForschungszentrum Jülich$$b1$$kFZJ
000911141 9131_ $$0G:(DE-HGF)POF4-141$$1G:(DE-HGF)POF4-140$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1411$$aDE-HGF$$bForschungsbereich Energie$$lNukleare Entsorgung, Sicherheit und Strahlenforschung (NUSAFE II)$$vNukleare Entsorgung$$x0
000911141 9141_ $$y2022
000911141 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000911141 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000911141 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911141 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000911141 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-18$$wger
000911141 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000911141 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000911141 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-18
000911141 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL GEOCHEM : 2021$$d2022-11-18
000911141 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000911141 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-18
000911141 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-18
000911141 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-18
000911141 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung$$x0
000911141 9801_ $$aFullTexts
000911141 980__ $$ajournal
000911141 980__ $$aVDB
000911141 980__ $$aUNRESTRICTED
000911141 980__ $$aI:(DE-Juel1)IEK-6-20101013
000911141 981__ $$aI:(DE-Juel1)IFN-2-20101013