Assessing the State of Autovectorization Support
based on SVE

1% Bine Brank
Jiilich Supercomputing Centre
Forschungszentrum Jiilich
Jiilich, Germany
b.brank @fz-juelich.de

Abstract—So-called SIMD instructions, which trigger opera-
tions that process in each clock cycle a data tuple, have become
widespread in modern processor architectures. In particular,
processors for high-performance computing (HPC) systems rely
on this additional level of parallelism to reach a high throughput
of arithmetic operations. Leveraging these SIMD instructions
can still be challenging for application software developers. This
challenge has become simpler due to a compiler technique called
auto-vectorization. In this paper, we explore the current state
of auto-vectorization capabilities using state-of-the-art compilers
using a recent extension of the Arm instruction set architecture,
called SVE. We measure the performance gains on a recent pro-
cessor architecture supporting SVE, namely the Fujitsu A64FX
processor.

Index Terms—ISA, auto-vectorization, Arm, SVE

I. INTRODUCTION

Typical state-of-the-art CPU core architectures implement
instructions that follow the Single Instruction-Multiple Data
(SIMD) paradigm. We use the term SIMD instruction to refer
to instructions where a single instruction triggers operations
that process in each clock cycle a data tuple, i.e. multiple data.
An early example of an Instruction Set Architectures (ISA)
comprising SIMD instructions is Intel’s Streaming SIMD Ex-
tensions (SSE), which was introduced in 1999 as an extension
to the x86 ISA. The operands of SSE instructions have a size
of 128 bits. Later, Intel quadrupled the width of the operands
when introducing AVX512.

SIMD instructions have meanwhile been included in all
ISAs used for general-purpose processors suitable for high-end
computing. This also includes Arm, which recently introduced
the Scalable Vector Extension (SVE) [I]F_] A remarkable
feature of this SIMD ISA is that the operands do not have a
width fixed by the ISA. SVE operands could have any width
between 128 and 2048 bits, but the width must be a multiple of
128 bits. The first processor supporting SVE instructions has
been Fujitsu’s A64FX processor, which has been developed
in a co-design process with RIKEN [2] and features an SVE
operand width of 512 bits.

To fully exploit the performance of processor architectures
like the A64FX or Intel processors supporting AVXS512, this
SIMD parallelism cannot be ignored. These SIMD ISAs can

IMeanwhile an extended version called SVE2 is available, which, however,
is not considered here.

2" Dirk Pleiter

PDC Center for High Performance Computing

KTH Royal Institute of Technology
Stockholm, Sweden
0000-0001-7296-7817

be explicitly exploited using special functions, supported by
popular compilers and called intrinsic functions (or built-in
functions). This approach results, however, in non-portable
code. This may be acceptable if additional efforts for maintain-
ing such codes can be justified. But for application software,
it is typically much more attractive to rely on the ability of
compilers to generate code that leverages a SIMD ISA. This
technique is called auto-vectorization.

We use the advent of the SVE ISA as an opportunity to
assess the auto-vectorization capabilities of today’s compilers.
This investigation is based on the TSVC2 benchmark suite,
which has been developed and extended as a benchmark suite
to test and challenge the auto-vectorization capabilities of
compilers [3]], [4]]. We measure the achieved performance gain
using the A64FX processor architecture. In selected cases,
we perform a comparison with manual vectorization using
intrinsic functions. This analysis allows us to reason about
instructions that are not available in the current SVE ISA
but could be exploited for vectorizing one or more of the
explored benchmarks. Given that we focus on a set of synthetic
benchmarks, we would like to stress that from the speed-up
factors reported in this short paper one cannot infer the speed-
up achieved for real-life applications.

This paper makes the following contributions:

1) We provide results that allow us to compare the auto-
vectorization capabilities of different state-of-the-art
compilers using the TSVC benchmark suite. This in-
cludes a manually vectorized version of 136 benchmarks
using SVE intrinsics.

2) The benchmarks are executed on the A64FX hardware
to obtain quantitative results on the speed-up.

3) We explore possible gaps in the SVE ISA and identify
three instructions that could be added to SVE to create
additional opportunities for vectorization.

This paper is organised as follows: In section we
present related work. Next, we document our methodology
in section followed by a documentation of the results in
section These results are analysed in section |V| before we
present a summary and conclusions in section

II. RELATED WORK

The Test Suite for Vectorizing Compilers (TSVC), devel-
oped by Callahan et al. [3]], is a common benchmark suite
to evaluate auto-vectorization. In 2011, the original version
was expanded to 151 loops by Maleki et al. [4]. In this
work, vectorization capabilities were evaluated for different
compilers including ICC, XLC and GCC. 124 to 127 loops
were identified as vectorizable loops with compilers vectoriz-
ing 59 to 90 loops. Additionally, he classified loops by opti-
mization techniques. Moldovanova et al. [5] studied the auto-
vectorization of loops on Intel64 and Intel Xeon Phi. Here, a
higher degree of vectorization (79-100) is reported. Another
benchmark suite developed for testing the auto-vectorization
capabilities of compilers is the PolyBench/C benchmark suite
[6]. Other benchmark suites, like Video SIMDBench [7]], have
been designed according to typical code patterns of a specific
domain.

These benchmarks have not only been used to test compilers
but also to compare improvements that can be obtained on
different architectures. For instance, in [4] the speed-up has
been measured for processors from the Intel Nehalem as well
as the IBM Power 7 generation of processors. While this work
focuses on results obtained with compiler-generated code, we
also compare it with manually vectorized code using intrinsic
functions.

Since Arm proposed the SVE ISA [1f], a lot of work
has been performed on assessing the benefits of this novel
SIMD ISA. The focus has been mainly on full or simplified
applications, so-called mini-applications. In [8]] the genera-
tion of SVE instructions by different compilers is explored
for different benchmarks and mini-applications using an in-
struction emulator. Leveraging the vectorization opportunities
based on SVE has been explored for different applications,
e.g. applications from the area of LQCD [9]], or different
numerical kernels, e.g. FFT [10]. This work does, however,
not systematically evaluate the auto-vectorization capabilities
of the used compilers, explore to which extent the SVE ISA is
exploited and/or investigate possible extensions of this SIMD
ISA.

Due to its unique features, the A64FX processor has at-
tracted significant interest and various publications have be-
come available that evaluate this novel processor architecture,
e.g. [11]-[13]. The A64FX processor was the first to support
the SVE ISA. Meanwhile, AWS’s Graviton3 became available,
which is not considered here. It supports SVE instructions with
operands of a width of 256 bits, i.e. half the width compared to
the A64FX. An alternative strategy for exploring performance
is to use simulators like gem5 (see, e.g., [14]).

III. METHODOLOGY

We evaluate the compilers’ ability to vectorize loops for
SVE using the TSVC2. TSVC is a benchmark suite for evalu-
ating a compiler’s auto-vectorization capabilities. The original
version, written by Callahan et al. [3]], contained 135 synthetic
loops. In 2011, TSVC was extended to 151 loops (TSVC2).
The benchmarks test various strategies for vectorization like

dependence testing, statement reordering, loops interchange,
scalar expansion, etc. The loops have not been extracted
from any real-life application but were explicitly written for
compiler analysis. The benchmark is designed to cover various
types of loops with access to 1- or 2-dimensional arrays. It
covers, e.g., various cases of linear dependence testing with or
without jumps in data access. One example is the loop s/11
shown in Listing |I| where the loop counter is incremented
by two in each iteration. Furthermore, cases of induction
variable recognition are tested, where array access depends
on a variable that is increased (or decreased) by a variable
amount in each iteration. Also, loops used for packing arrays
conditionally are tested. One such example is the loop s34/
shown in Listing

We analyze three compilers: GCC 11.1.0, Arm Com-
piler for Linux (ACfL) 22.0.1 and the Clang version of
the Fujitsu Compiler 4.7 (FCC). SVE is targeted with
-march=armv8.2-a+sve. For each compiler, we en-
able all optimizations which we deem relevant for vec-
torization. Most importantly, we enable —Ofast which
sets the —ffast-math flag. This flag enables the biggest
set of optimizations and may break strict compliance
with the IEEE 754 standard for floating-point arith-
metic. In the case of GCC, we also enable —fivopts
which enables induction variable optimization on trees and
use aarch64-auto-vectorization-preference to
only vectorize loops with SVE instructions and not NEON.
For ACfL and FCC, -ffp-contract=fast was used to
enable fused multiply-add operations. In the case of GCC
this is enabled by default. In the case of ACfL, the op-
tion —fsimdmath allows the compiler to generate calls to
vectorized ArmPL library routines. Table |I| documents the
specific flags that have been used for each of the com-
pilers. The array lengths were set to LEN_1D=8000 and
LEN_2D=80 to ensure that the entire data footprint fits
into the L2 cache. Each loop was executed 1000 times. To
compare results with a fixed-size SIMD ISA, we have also
performed experiments targeting AVX-512. For this, we used
GCC and changed the target with -march=cascadelake
—-—mprefer-vector-width=512.

We perform both, a static and dynamic analysis. First, we
check the compiler-generated executables by inspecting the
assembly and reviewing the compiler optimisation reports.
Here, we wrote a script that reads the optimisation reports
and parses the result for each TSVC loop. For cases where
compilers produce different SVE codes, we use the LLVM
machine code analyzer (Ilvm-mca) to analyze different com-
pilations. We target SVE with 11vm-mca -march=arm64
-mcpu=a64fx. E] As a metric for comparing the compilers,
we focus on the number of loops that have been vectorized.

For the dynamic analysis, we rely on the A64FX processor.
The A64FX is the first processor that implements SVE and
features two 512-bit SVE units. We compare the benchmark

2We use llvm-mca (26.6.2022 trunk) on Godbolt compiler explorer available
at http://www.godbolt.org,

http://www.godbolt.org

execution times for the three different compilers. For this
purpose, we introduce the vectorization speed-up

n= Atscalar
Atvec ’

where Atgcalar and Aty are the execution time for the
scalar and vectorized versions of the benchmarks. Scalar
binaries are produced using the same flags but adding
—-fno-tree-vectorize or —fno-vectorize. Instead
of the vectorization speed-up, one may also consider the
efficiency

(D

Ui
€ =
N lane ’
where Ni.pe is the size of the data tuples that fit into a SIMD
operand. Since all loops use single-precision floating-point

numbers and we are considering SVE operands with a width
of 512 bits, we here have N, = 16.

2

IV. RESULTS

Table [II| reports the number of SVE vectorized loops in
TSVC by different compilers. FCC vectorizes most loops
(97), followed by GCC and ACfL. The latter does identify
more opportunities for vectorization. However, based on an
internally computed metric, the ACfL compiler decides in 11
cases that vectorization for SVE target is not beneficial. In 5 of
11 cases, loops are instead vectorized with NEON instructions.
On the other hand, GCC and FCC do not report any cases
where vectorization is not beneficial. Figure |I| shows how
vectorized loops overlap between different compilers. (For
ACfL, 11 above-mentioned loops are included.) A total of
115 loops were vectorized by at least one compiler, and 80
loops were vectorized by all three. Recent studies [5] [15] also
report similar numbers (95-111) for x86’s AVX-512 SIMD set.
Our experiment with AVX-512 shows that GCC vectorizes
97 loops of which 4 loops were not vectorized for SVE
and 1 loop was vectorized for SVE but not AVX-512. Four
extra loops were, however, vectorized with 256-bit vectors
(AVX-256) and were also vectorized by ACfL and FCC for
SVE. Therefore, the VLA paradigm does not introduce any
significant drawbacks in terms of vectorization. On top of that,
we manually vectorized 21 more loops with intrinsic functions
giving 136 vectorizable loops. This code is publicly available

vectorized

not vectorized
intrinsic

Fig. 1. Vectorization in TSVC (151 loops)

3https://gitlab.jsc.fz-juelich.de/brank1/tsvc_sve

Table shows the total run-time of the entire TSVC2
benchmark suite (151 loops) on the A64FX processor. Here,
ATcalar and ATye. refers to the accumulated execution time
of all benchmarks without and with vectorization by the
compiler enabled. AT, insic shows the total execution time
where all 136 vectorizable loops were manually vectorized
with intrinsic functions. However, for loops autovectorized
by compilers, the intrinsic code is practically the same as
compiler-generated code. The fastest binaries are produced by
FCC (2.68s), followed by ACfL (2.92s) and GCC (3.735).
Although this corresponds with the number of vectorized
loops, the result is, partly, also a consequence of faster scalar
code. We also notice that the GCC code is approximately 40%
slower than FCC. We observe that FCC uses aggressive loop-
unrolling and many loops are automatically unrolled over a
factor of two or four. This is reflected in the size of the FCC’s
binary, which is 2.2 and 2.9 times bigger than those generated
by the ACfL and GCC compilers. Also, we note that some
loops take significantly longer time than others, so the total
average time difference is significantly weighted towards a
few computationally more expensive loops. Our intrinsic im-
plementation takes 1.64-1.69 seconds with compilers showing
little difference in performance. Intrinsic code is 40% faster
than FCC, however, for the majority of loops, the difference
between auto-vectorization and intrinsic implementation is
significantly smaller. The 40% difference mostly comes from
additional vectorization, because ATy, is dominated by loops
which are not vectorized.

In Table TV] we count the number of loops that achieve a
vector speed-up of at least 1.15, 2, 4, and 8. In all cases,
FCC reports less loops with bigger speed-up, which is a
consequence of a faster scalar code. Additionally, we observed
several loops where € is close to 1 (7 close to 16).

V. ANALYSIS

From inspecting the code generated by the compilers for
the TSVC2 benchmarks we conclude that key features of
the SVE ISA are exploited. All three compilers, e.g., gen-
erated gather-load and scatter-store instructions in loops with
complex memory patterns. Furthermore, all compilers used
reduction instructions, and predicate register as a mask for
loops with conditional statements. A strange compilation was
observed for reversed loops (i.e. loops with decrementing loop
counter). In SVE, predicate driven loop control is achieved
with whilele and whilelt instructions that create a predicate
register equivalent to loop exit condition. However, whilege
or whilegt are not deﬁnecﬂ and compilers rely on the rev
instruction to reverse the contents of vector registers in each
iteration. Other than that, we did not notice any drawbacks
that could be attributed to the VLA feature of SVE. We
observed that GCC produces in various cases significantly
different assembly compared to the LLVM-based compilers
(ACTL and FCC). For example, consider the loop s/11, which
is shown in Listing |1} The loop counter is incremented by two

4Instructions whilegt and whilege were introduced in SVE2.

https://gitlab.jsc.fz-juelich.de/brank1/tsvc_sve

TABLE I
COMPILER FLAGS

GCC (gcc)

ACIL (armclang) FCC (fcc -Nclang)

-march=armv8.2-at+sve -Ofast -fivopts
—-param aarché64-autovec-preference=2
(-fno-tree-vectorize)

-march=armv8.2-at+sve -Ofast
—fsimdmath -ffp-contract=fast
(-

-march=armv8.2-at+sve
-Ofast —-ffp-contract=fast
(-fno-vectorize)

fno-vectorize)

TABLE 11
THE NUMBER OF LOOPS THAT HAVE BEEN VECTORIZED (IN BRACKETS IS
THE NUMBER OF ADDITIONAL LOOPS THAT HAVE BEEN IDENTIFIED AS
VECTORIZABLE BUT HAVE NOT BEEN VECTORIZED FOR SVE).

GCC ACIL FCC Intrinsic

94 (+0) | 93 (+11) | 97 (+0) 136
TABLE III

TSVC TOTAL TIME IN UNITS OF SECONDS.
GCC | ACfL | FCC
ATscalar 7.58 8.84 6.10
ATyvec 3.73 2.92 2.68
ATintrinsic 1.64 1.68 1.69

in each iteration and requires handling of data with stride two.
All three compilers vectorize this loop, but with a different
approach. GCC uses [d2 instructions to load elements of
a and b, interleaving odd and even into separate registers.
Afterwards, a scatter-store instruction is used to write the data
to a[i] (see Listing E] in the Appendix). On the other hand,
ACSL and FCC use normal /d! load and st/ store instructions
(see Listing |10]in Appendix). This requires four additional zip
instructions to separate even and odd elements (two for data
registers and two for predicate registers). llvm-mca predicts
that GCC code is 2.42 times faster than ACfL, however, our
measurement shows only a difference of 20%.

1 for (int i = 1; i < LEN_ID; i += 2) {
2 alil = ali - 1] + blil;
3

Listing 1. Loop s/11

Another example of different code generation is observed
for loop 5124 (see Listing [2). An important observation in this
loop is that j is incremented during each iteration and that all
elements of array a are overwritten. All three compilers gen-
erate vector compare instructions to create a predicate register,
whose active lanes satisfy the condition of positive b values.
However, such predicate is used differently by GCC than by
Clang based compilers. GCC uses two finla instructions, where
the second predicated fimla overwrites those lanes where the
condition evaluates to true (see Listing[IT)in Appendix). ACfL
and FCC rather use a predicated sel instruction to copy b [1]
and c[1] in the right lanes of an SVE register. Afterwards,
only a single fimla operations is required (see Listing [I2] in
Appendix). In this case, llvm-mca predicts the code generated
by GCC to be 24% faster than ACfL, while measurement
on the A64FX hardware shows that GCC is 12% faster than
ACTL.

TABLE IV
TSVC SPEED-UP.
GCC | ACfL | FCC
n > 1.15 86 83 76
n>2 81 77 73
n>4 72 67 51
n>8 42 46 23
1 for (int i = 0; i < LEN_ID; i++) {
2 if (b[i] > (real_t)0.) {
3 i+
4 a[j] = b[i] + d[i] = e[i];
5 } else {
6 i+
7 al[j] = c[i] + d[i] = e[i];
8
9 }

Listing 2. Loop 5124

For loops that were vectorized by only one compiler, we
noticed that GCC is slightly better at loops involving goto
constructs (see Listing |3| as an example). For ACfL and FCC,
we did not observe any patterns that would suggest them being
better for a particular family of loops. Table [V] shows loops
vectorized by only one compiler.

1 for (int i = 0; i < LEN_ID-1; ++i) {
2 if (b[i] < (real_t)0.) {

3 goto L20;

4 }

5 a[i] = c[i] + d[i] = e[i];
6 goto LI10;

7 L20:

8 cli+l] = a[i] + d[i] = d[i];
9 LI10:

10 ;

1}

Listing 3. Loop s/61

TABLE V
TSVC LOOPS VECTORIZED BY ONLY ONE COMPILER
GCC ACfL FCC
s122 s231 s235 s115 s118 s212 s241
5257 $331 s119 52102 | s256 s351

A. Limits of the auto-vectorizers

We identified 21 loops that were not vectorized by any
compiler, but we managed to vectorize these using SVE
intrinsics. Loop s34/ (see Listing [d) was an example of a loop
where the compilers fail to spot an opportunity of leveraging
the SVE ISA.

In this loop, all values of b which are greater than zero are
packed in the array a. At first, the loop seems hard to vectorize
due to the increment j++ which makes j depend on previous

NN B WD =

— O 00NN R W —

iterations. However, SVE includes a compact instruction which
concatenates active elements of the register and fills the rest
with zero. Therefore, we can first use a cmpgt instruction
to find all lanes where b[1i] > 0.0f, followed by a cntp
instruction to count number of such elements. Afterward, this
information is used to store the right number of elements to
a and correctly increment j. The intrinsic implementation is
shown in Listing [3]

i=-n

for (int i = 0; i < LEN_ID; i++) {
if (b[i] > (real_t)0.) {
jtts
alj] =blil];
}
Listing 4. Loop s341
do

svfloat32_t bv = svld1_f32(pg, &b[i]);
svbool_t cg = svempgt(pg, bv, zerov);
svfloat32_t res = svcompact_f32(cg, bv);
int inc_j = sventp_b32(svptrue_b32(), cg);
svbool_t tg = svwhilelt_b32(0, inc_j);
svstl (tg, &al[j], res);
j += inc_j;
i += sventw ();
pg = svwhilelt_b32 (i, LEN_ID);

} while (svptest_any (svptrue_b32(), pg));

Listing 5. SVE vectorization of loop s341

In other loops, the compiler failed to realise vectorization
opportunities for reasons that are not specific to SVE. In
these cases, loops require a specific transformation to enable
vectorization. The compilers do not recognize these opportu-
nities in various cases. Here we give a brief overview of the
transformations that we used:

o Loop splitting is a technique where the loop is split
into two separate loops. We use this to vectorize loops
where straightforward vectorization fails due to a specific
iteration. This is because other iterations depend on it or
the particular iteration has different properties than other
iterations. In most cases, vectorization can still be applied
if the special iteration is handled with scalar instructions.
This applies to loops s1713 and s281.

o Loop peeling is a special case of loop splitting where
the first (or last) few iterations are split from the loop
and performed outside the loop. A missed opportunity
for vectorization that requires loop peeling was observed
for loops $244, s254, 5255, s291, s292 and s293.

« Pre-loading is a technique where data is pre-loaded into a
SIMD vector to store the copy of the original data before
it gets overwritten. A missed opportunity for vectorization
involving pre-loading was observed in s211, s1213, s241,
5243, and s1244.

o Searching loops are loops that search the first value in
an array (and its corresponding index) that satisfies a
certain condition. This applies to loops $332, s481, s482,
§3110, and s13110. A way to vectorize this loop is to use
the SVE vector compare operation to see if a searched
value is in the current iteration. If it is found then it
is manually checked one by one for the first value that

fits the condition. The performance of such vectorization
depends on the values of a[i].

« Some loops involve a combination of multiple techniques
for a successful vectorization (for example, 5726, s232,
§2251).

B. Limits of the ISA

The TSVC2 benchmark suite also allows identifying cases,
where vectorization does not fail due to the lacking capabilities
of the compiler’s auto-vectorizer but rather due to limitations
of the ISA. These cases can be used for identifying possible
new instructions to facilitate vectorization also in these cases.

One example is loop s3112 (see Listing [6), which computes
a prefix sum. Although there exist algorithms that compute a
prefix sum using SIMD instructions, they usually do that with
partial sums in multiple sweeps. This could be avoided with
a hardware implementation of a prefix sum SVE instructiorf’]
(see Figure [2)). Since there is already the fadda instruction,
which computes a sum-reduction in order, prefix sums already
appear naturally during the execution of this operation. There-
fore, a modification to prefix sum does not seem far-fetched.

sum = (real_t)0.0;

for (int i = 0; i < LEN_ID; i++) {
sum += al[i];
b[i] = sum;
Listing 6. Loop 3112
[2[3]0]1]2]7]8]5]

Y
|2[5]5]6]8][15[2328]

Fig. 2. Possible prefix sum instruction

Loop 5342 (see Listing [/)) leads to the opposite case. Array
element b [j] is only unpacked if the array element afi] is
positive. SVE does not include instructions that would unpack
the vector under predicate control (see Figure [3). Such an
instruction, which would have an opposite effect than the
compact instruction, would be needed for vectorizing s342.

for (int i = 0; i < LEN_ID; i++) {
if (a[i] > (real_t)0.) {
j++s
a[i] = b[j s

Listing 7. Loop s342

Loop 258 is shown in Listing [8] The temporary variable
s only changes value during specific iterations. Such a loop
could be vectorized if instructions existed that would copy the
last active element under predicate control. An example of
such a potential instruction is presented in Figure

5The idea of prefix sum hardware implementation was first introduced for
vector computers in 1990 by Chatterjee et al.

[2[3]0]1]2]7]8]5]
Y

t t t|t

21X |x|[3|x[0|1]|x

Fig. 3. Possible unpack instruction

for (int i = 0; i < LEN_2D; ++i) {
if (a[il > 0.) {
s = d[i] = d[i];
bl[i] = s % c[i] + d[i];
e[i] = (s + (real_t)1.) *x aa[O][i];
}

Listing 8. Loop s258

1
t

2
f

7
t

8
t

ft

Y
[2]2[2]1]1]7]8]8]

Fig. 4. Possible last active instruction

VI. SUMMARY AND CONCLUSIONS

In this work, we have assessed current compiler auto-
vectorization capabilities based on SVE. SVE is a novel SIMD
ISA for Arm that introduces the novel feature of vector-
length-agnostic (VLA) SIMD instructions. We noticed that the
investigated compilers, namely GCC, Arm Compiler for Linux
(ACfL), and the Fujitsu C Compiler (FCC), have no problems
adapting to the VLA target. The results of TSVC2 benchmark
show that these compilers can vectorize up to 115 of 151
loops and generate SVE SIMD instructions. Additionally, key
features of the SVE ISA including gather/scatter, reduction,
and predicate instructions are exploited. Although the number
of vectorized loops is similar, the fastest code was produced
by FCC, followed by ACfL and GCC. In certain cases,
Clang-based compilers (ACfL and FCC) produce significantly
different codes than GCC. We have also shown that compilers
fail to vectorize many loops which can be vectorized manually.
We provided a vectorized implementation of 136 benchmarks
using SVE intrinsic functions. The execution time of the
entire TSVC2 benchmark suite can be improved by 40% when
performing such a manual vectorization. Finally, we identified
three loops where a small change of the SVE ISA, namely the
addition of three instructions, could open new vectorization
opportunities.

ACKNOWLEDGEMENTS

The authors would like to thank the Stony Brook Research
Computing and Cyberinfrastructure, and the Institute for Ad-
vanced Computational Science at Stony Brook University for
access to the innovative high-performance Ookami computing

system, which was made possible by a $5M National Science
Foundation grant (#1927880). Furthermore, we want to thank
the Open Edge and HPC Initiative for access to an Arm-
based development environment through the HAICGU cluster
at the Goethe University of Frankfurt. Funding for parts of
this work has been received from the European Commission
H2020 program under Grant Agreement 779877 (Mont-Blanc
2020) as well as from the Swedish e-Science Research Centre
(SeRO).

APPENDIX

In the following we document different examples that il-
lustrate the large differences in code generated by GCC and
ACTL.

A. Different compilation of loop sl111

1 .L337:
2 1d2w {z0.s — z1.s}, pO/z, [x2]
3 1d2w {z2.s - z3.s}, p0/z, [x3]
4 add x5, x2, 4
5 fadd z0.s, z0.s, z2.s
6 stlw z0.s, p0, [x5, z4.s, sxtw 2]
7 incw x0
8 mov w5, 3999
9 add x3, x3, x4
10 add x2, x2, x4
11 whilelo p0.s, w0, w5
12 b.any .L337
Listing 9. GCC-generated assembly
1 .LBBI153_2:
2 1dlw { z2.s }, p0/z, [x22, x9, Isl #2]
3 1dlw { z0.s }, p0/z, [x20, x9, Isl #2]
4 Idlw { zl.s }, p0/z, [x21, x9, Isl #2]
5 pfalse pl.b
6 fmul z3.s, z4.s, z2.s
7 add x9, x9, x24
8 fmul z3.s, zl.s, z3.s
9 fadd zl.s, zl.s, z0.s
10 fadd zl.s, zl.s, z2.s
11 fmad z0.s, p3/m, zl.s, z3.s
12 add x10, x23, w8, sxtw #2
13 zipl p2.s, pO.s, pl.s
14 zip2 pl.s, pO.s, pl.s
15 zipl zl.s, z0.s, z0.s
16 whilelo p0.s, x9, x19
17 zip2 z0.s, z0.s, z0.s
18 add w8, w8, w25
19 stlw { z1.s }, p2, [x10]
20 stlw { z0.s }, pl, [x10, #I, mul vl]
21 b.mi .LBB153_2

Listing 10. ACfL-generated assembly

B. Different compilation of loop s124

1 .L519:

2 1dlw z0.s, p0/z, [x1, x0, 1sl 2]
3 Idlw zl.s, p0/z, [x25, x0, Isl 2]
4 1dlw z2.s, p0/z, [x22, x0, Isl 2]
5 Idlw z3.s, p0/z, [x21, x0, Isl 2]
6 fcmle pl.s, p2/z, z0.s, #0.0

7 fmla z0.s, p2/m, zl.s, z2.s

8 movprfx z0.s, pl/m, z3.s

9 fmla z0.s, pl/m, zl.s, z2.s

10 stlw z0.s, p0, [x19, x0, 1sl 2]
11 add x0, x0, x23

12 whilelo p0.s, w0, w20

13 b.any .L519

Listing 11. GCC-generated assembly

—— = — =
AW = OO0V W=

.LBB168_2:

1ldlw
1dlw
Id1w
fcmgt
not
and
1dlw
sel
fmla

{ 20.s }, p0/z,
{ zl.s }, p0/z,
{ z3.s }, p0/z,
pl.s, p3/z, z0.s,
p2.b, p3/z, pl.b
p2.b, p3/z, p0.b, p2.b
{ z2.s }, p2/z, [x21,
z0.s, pl, z0.s, z2.s

z0.s, p3/m, z3.s, zl.s
stlw { z0.s }, p0, [x24, x8,
add x8, x8, x25

whilelo p0.s, x8, x19

b.mi .LBB168_2

[x20,
[x22,
[x23,
#0.0

x8,
x8,
x8,

1s1 #2]
1s1 #2]
Is1 #2]

x8, Isl #2]

Isl #2]

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

Listing 12. ACfL-generated assembly

REFERENCES

A. Rico, J. A. Joao, C. Adeniyi-Jones, and E. Van Hensbergen,
“Arm hpc ecosystem and the reemergence of vectors: Invited paper,”
in Proceedings of the Computing Frontiers Conference, ser. CF’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
329-334. [Online]. Available: https://doi.org/10.1145/3075564.3095086
M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,
H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya,
A. Asato, K. Morita, and T. Shimizu, “Co-design for A64FX manycore
processor and “fugaku”,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’20. IEEE Press, 2020.

D. Callahan, J. Dongarra, and D. Levine, “Vectorizing compilers: a
test suite and results,” in Supercomputing '88: Proceedings of the 1988
ACM/IEEE Conference on Supercomputing, Vol. I, 1988, pp. 98-105.
S. Maleki, Y. Gao, M. J. Garzar ‘n, T. Wong, and D. A. Padua, “An
evaluation of vectorizing compilers,” in 2011 International Conference
on Parallel Architectures and Compilation Techniques, Oct 2011, pp.
372-382.

O. V. Moldovanova and M. G. Kurnosov, “Auto-vectorization of loops
on intel 64 and intel xeon phi: Analysis and evaluation,” in Parallel
Computing Technologies, V. Malyshkin, Ed. Cham: Springer Interna-
tional Publishing, 2017, pp. 143-150.

T. Yuki, “Understanding PolyBench/C 3.2 kernels,” in Proceedings of

the 4th International Workshop on Polyhedral Compilation Techniques,
ser. IMPACT ’14, Jan. 2014.

M. Alvanos and P. Trancoso, “Video SIMDBench: Benchmarking the
compiler vectorization for multimedia applications,” in 2016 Euromicro
Conference on Digital System Design (DSD), 2016, pp. 168-175.

A. Poenaru and S. Mclntosh-Smith, “Evaluating the effectiveness of
a vector-length-agnostic instruction set,” in Euro-Par 2020: Parallel
Processing, M. Malawski and K. Rzadca, Eds. Cham: Springer
International Publishing, 2020, pp. 98-114.

N. Meyer, P. Georg, D. Pleiter, S. Solbrig, and T. Wettig, “SVE-enabling
lattice QCD codes,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 623-628.

D. Takahashi and F. Franchetti, “Ffte on sve: Spiral-generated kernels,”
in Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, ser. HPCAsia2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 114-122.
[Online]. Available: https://doi.org/10.1145/3368474.3368488

F. Banchelli, K. Peiro, G. Ramirez-Gargallo, J. Vinyals, D. Vicente,
M. Garcia-Gasulla, and F. Mantovani, “Cluster of emerging technology:
evaluation of a production hpc system based on A64FX.” in 2021 IEEE
International Conference on Cluster Computing (CLUSTER), 2021, pp.
741-750.

M. A. S. Bari, B. Chapman, A. Curtis, R. J. Harrison, E. Siegmann,
N. A. Simakov, and M. D. Jones, “A64FX performance: experience on
Ookami,” in 2021 IEEE International Conference on Cluster Computing
(CLUSTER), 2021, pp. 711-718.

B. Brank, S. Nassyr, F. Pouyan, and D. Pleiter, “Porting applications
to Arm-based processors,” in 2020 IEEE International Conference on
Cluster Computing (CLUSTER), 2020, pp. 559-566.

[14]

[15]

L. Zaourar, M. Benazouz, A. Mouhagir, F. Jebali, T. Sassolas, J.-C.
Weill, C. Falquez, N. Ho, D. Pleiter, A. Portero, E. Suarez, P. Petrakis,
V. Papaefstathiou, M. Marazakis, M. Radulovic, F. Martinez, A. Arme-
jach, M. Casas, A. Nocua, and R. Dolbeau, “Multilevel simulation-based
co-design of next generation hpc microprocessors,” in 2021 International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2021, pp. 18-29.

M. Rajan, D. W. Doerfler, M. Tupek, and S. Hammond, “An investigation
of compiler vectorization on current and next-generation Intel processors
using benchmarks and Sandia’s Sierra applications,” 2015.

https://doi.org/10.1145/3075564.3095086
https://doi.org/10.1145/3368474.3368488

	Introduction
	Related Work
	Methodology
	Results
	Analysis
	Limits of the auto-vectorizers
	Limits of the ISA

	Summary and Conclusions
	Different compilation of loop s111
	Different compilation of loop s124

	References

