000911150 001__ 911150
000911150 005__ 20230224084258.0
000911150 0247_ $$2doi$$a10.1021/acscatal.2c04240
000911150 0247_ $$2WOS$$aWOS:000881780200001
000911150 037__ $$aFZJ-2022-04465
000911150 082__ $$a540
000911150 1001_ $$0P:(DE-Juel1)185993$$aAmariei, Diana A.$$b0
000911150 245__ $$aEnzymatic C3-Methylation of Indoles Using Methyltransferase PsmD─Crystal Structure, Catalytic Mechanism, and Preparative Applications
000911150 260__ $$aWashington, DC$$bACS$$c2022
000911150 3367_ $$2DRIVER$$aarticle
000911150 3367_ $$2DataCite$$aOutput Types/Journal article
000911150 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1674463077_17617
000911150 3367_ $$2BibTeX$$aARTICLE
000911150 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911150 3367_ $$00$$2EndNote$$aJournal Article
000911150 520__ $$aEnantioselective methylation is a challenging task in organic chemistry, yet often desirable in drug discovery and optimization. S-Adenosyl methionine (SAM)-dependent methyltransferases (MTases) offer a selective alternative to chemical synthesis and an abundance of potential scaffolds. The crystal structure of C3-indole MTase PsmD from Streptomyces griseofuscus, involved in the biosynthesis of the acetylcholinesterase inhibitor physostigmine, was determined via X-ray crystallography. The amino acid residues essential for catalysis were identified by site-directed mutagenesis, and a mechanism of action was proposed. Furthermore, a PsmD ortholog was identified and characterized. The variant catalyzed enantioselective C-methylation over a broad substrate scope while displaying increased stability. Using this enzyme, preparative-scale enzymatic methylation was performed in cell-free extracts in combination with an SAM recycling system, eliminating the need for cofactor supplementation.
000911150 536__ $$0G:(DE-HGF)POF4-2171$$a2171 - Biological and environmental resources for sustainable use (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000911150 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000911150 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911150 7001_ $$0P:(DE-Juel1)180818$$aPozhydaieva, Nadiia$$b1
000911150 7001_ $$0P:(DE-Juel1)190107$$aDavid, Benoit$$b2
000911150 7001_ $$0P:(DE-Juel1)176354$$aSchneider, Pascal$$b3
000911150 7001_ $$0P:(DE-Juel1)128890$$aClassen, Thomas$$b4
000911150 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b5
000911150 7001_ $$0P:(DE-Juel1)131988$$aWeiergräber, Oliver H.$$b6
000911150 7001_ $$0P:(DE-Juel1)128906$$aPietruszka, Jörg$$b7$$eCorresponding author
000911150 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.2c04240$$gp. 14130 - 14139$$n22$$p14130 - 14139$$tACS catalysis$$v12$$x2155-5435$$y2022
000911150 8564_ $$uhttps://juser.fz-juelich.de/record/911150/files/acscatal.2c04240.pdf$$yRestricted
000911150 909CO $$ooai:juser.fz-juelich.de:911150$$pVDB
000911150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185993$$aForschungszentrum Jülich$$b0$$kFZJ
000911150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190107$$aForschungszentrum Jülich$$b2$$kFZJ
000911150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176354$$aForschungszentrum Jülich$$b3$$kFZJ
000911150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128890$$aForschungszentrum Jülich$$b4$$kFZJ
000911150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b5$$kFZJ
000911150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131988$$aForschungszentrum Jülich$$b6$$kFZJ
000911150 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128906$$aForschungszentrum Jülich$$b7$$kFZJ
000911150 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2171$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000911150 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000911150 9141_ $$y2022
000911150 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2021$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-15
000911150 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bACS CATAL : 2021$$d2022-11-15
000911150 920__ $$lyes
000911150 9201_ $$0I:(DE-Juel1)IBG-4-20200403$$kIBG-4$$lBioinformatik$$x0
000911150 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
000911150 9201_ $$0I:(DE-Juel1)IBOC-20090406$$kIBOC$$lInstitut für Bioorganische Chemie (HHUD)$$x2
000911150 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x3
000911150 980__ $$ajournal
000911150 980__ $$aVDB
000911150 980__ $$aI:(DE-Juel1)IBG-4-20200403
000911150 980__ $$aI:(DE-Juel1)IBI-7-20200312
000911150 980__ $$aI:(DE-Juel1)IBOC-20090406
000911150 980__ $$aI:(DE-Juel1)IBG-1-20101118
000911150 980__ $$aUNRESTRICTED