000911192 001__ 911192
000911192 005__ 20240313103133.0
000911192 0247_ $$2doi$$a10.1007/s00429-022-02496-9
000911192 0247_ $$2ISSN$$a0044-2232
000911192 0247_ $$2ISSN$$a0340-2061
000911192 0247_ $$2ISSN$$a1432-0568
000911192 0247_ $$2ISSN$$a1863-2653
000911192 0247_ $$2ISSN$$a1863-2661
000911192 0247_ $$2Handle$$a2128/32884
000911192 0247_ $$2pmid$$a35524072
000911192 0247_ $$2WOS$$aWOS:000791625400001
000911192 037__ $$aFZJ-2022-04504
000911192 082__ $$a610
000911192 1001_ $$00000-0001-5496-652X$$aDe Filippi, Eleonora$$b0$$eCorresponding author
000911192 245__ $$aMeditation-induced effects on whole-brain structural and effective connectivity
000911192 260__ $$aHeidelberg$$bSpringer$$c2022
000911192 3367_ $$2DRIVER$$aarticle
000911192 3367_ $$2DataCite$$aOutput Types/Journal article
000911192 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669793323_26924
000911192 3367_ $$2BibTeX$$aARTICLE
000911192 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911192 3367_ $$00$$2EndNote$$aJournal Article
000911192 520__ $$aIn the past decades, there has been a growing scientific interest in characterizing neural correlates of meditation training. Nonetheless, the mechanisms underlying meditation remain elusive. In the present work, we investigated meditation-related changes in functional dynamics and structural connectivity (SC). For this purpose, we scanned experienced meditators and control (naive) subjects using magnetic resonance imaging (MRI) to acquire structural and functional data during two conditions, resting-state and meditation (focused attention on breathing). In this way, we aimed to characterize and distinguish both short-term and long-term modifications in the brain’s structure and function. First, to analyze the fMRI data, we calculated whole-brain effective connectivity (EC) estimates, relying on a dynamical network model to replicate BOLD signals’ spatio-temporal structure, akin to functional connectivity (FC) with lagged correlations. We compared the estimated EC, FC, and SC links as features to train classifiers to predict behavioral conditions and group identity. Then, we performed a network-based analysis of anatomical connectivity. We demonstrated through a machine-learning approach that EC features were more informative than FC and SC solely. We showed that the most informative EC links that discriminated between meditators and controls involved several large-scale networks mainly within the left hemisphere. Moreover, we found that differences in the functional domain were reflected to a smaller extent in changes at the anatomical level as well. The network-based analysis of anatomical pathways revealed strengthened connectivity for meditators compared to controls between four areas in the left hemisphere belonging to the somatomotor, dorsal attention, subcortical and visual networks. Overall, the results of our whole-brain model-based approach revealed a mechanism underlying meditation by providing causal relationships at the structure-function level.
000911192 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000911192 536__ $$0G:(DE-Juel-1)PF-JARA-SDS005$$aSDS005 - Towards an integrated data science of complex natural systems (PF-JARA-SDS005)$$cPF-JARA-SDS005$$x1
000911192 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
000911192 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911192 7001_ $$0P:(DE-HGF)0$$aEscrichs, Anira$$b1
000911192 7001_ $$0P:(DE-HGF)0$$aCàmara, Estela$$b2
000911192 7001_ $$0P:(DE-HGF)0$$aGarrido, César$$b3
000911192 7001_ $$0P:(DE-HGF)0$$aMarins, Theo$$b4
000911192 7001_ $$0P:(DE-HGF)0$$aSánchez-Fibla, Marti$$b5
000911192 7001_ $$0P:(DE-Juel1)184621$$aGilson, Matthieu$$b6
000911192 7001_ $$0P:(DE-HGF)0$$aDeco, Gustavo$$b7
000911192 773__ $$0PERI:(DE-600)2303775-1$$a10.1007/s00429-022-02496-9$$gVol. 227, no. 6, p. 2087 - 2102$$n6$$p2087 - 2102$$tBrain structure & function$$v227$$x0044-2232$$y2022
000911192 8564_ $$uhttps://juser.fz-juelich.de/record/911192/files/s00429-022-02496-9.pdf$$yOpenAccess
000911192 909CO $$ooai:juser.fz-juelich.de:911192$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000911192 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184621$$aForschungszentrum Jülich$$b6$$kFZJ
000911192 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000911192 9141_ $$y2022
000911192 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000911192 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000911192 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-30$$wger
000911192 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911192 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000911192 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911192 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN STRUCT FUNCT : 2021$$d2022-11-17
000911192 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000911192 920__ $$lyes
000911192 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000911192 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x1
000911192 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x2
000911192 9801_ $$aFullTexts
000911192 980__ $$ajournal
000911192 980__ $$aVDB
000911192 980__ $$aUNRESTRICTED
000911192 980__ $$aI:(DE-Juel1)INM-6-20090406
000911192 980__ $$aI:(DE-Juel1)INM-10-20170113
000911192 980__ $$aI:(DE-Juel1)IAS-6-20130828
000911192 981__ $$aI:(DE-Juel1)IAS-6-20130828