000911221 001__ 911221
000911221 005__ 20240712112902.0
000911221 0247_ $$2doi$$a10.1002/ente.202200152
000911221 0247_ $$2ISSN$$a2194-4288
000911221 0247_ $$2ISSN$$a2194-4296
000911221 0247_ $$2Handle$$a2128/32523
000911221 0247_ $$2WOS$$aWOS:000814169800001
000911221 037__ $$aFZJ-2022-04526
000911221 082__ $$a620
000911221 1001_ $$0P:(DE-HGF)0$$aEngelpracht, Mirko$$b0$$eCorresponding author
000911221 245__ $$aWaste Heat to Power: Full‐Cycle Analysis of a Thermally Regenerative Flow Battery
000911221 260__ $$aWeinheim [u.a.]$$bWiley-VCH$$c2022
000911221 3367_ $$2DRIVER$$aarticle
000911221 3367_ $$2DataCite$$aOutput Types/Journal article
000911221 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668403438_11666
000911221 3367_ $$2BibTeX$$aARTICLE
000911221 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911221 3367_ $$00$$2EndNote$$aJournal Article
000911221 520__ $$aLarge amounts of waste heat, below 120 °C, are released globally by industry. To convert this low-temperature waste heat to power, thermally regenerative flow batteries (TRFBs) have recently been studied. Most analyses focus on either the discharging or the regeneration phase. However, both phases have to be considered to holistically assess the performance of the flow battery. Therefore, a dynamic, open-access, full-cycle model of a Cu–NH3 TRFB is developed in Modelica and validated with data from the literature. Based on the validated model, a trade-off between power density and efficiency is shown that depends only on the discharging strategy of the flow battery. For a sensible heat source with an inlet temperature of 120 °C and heat transfer at a thermodynamic mean temperature of about 90 °C, the power density reaches 38 W m−2 over a complete cycle, and the efficiency reaches 20% of Carnot efficiency. In a benchmarking study, the power production of the flow battery is shown to already achieve 34% of a fully optimized organic Rankine cycle. Thus, TRFBs require further optimization to become a competitive technology for power production and energy storage from low-temperature waste heat.
000911221 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000911221 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911221 7001_ $$0P:(DE-HGF)0$$aKohrn, Markus$$b1
000911221 7001_ $$0P:(DE-HGF)0$$aTillmanns, Dominik$$b2
000911221 7001_ $$0P:(DE-HGF)0$$aSeiler, Jan$$b3
000911221 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$eCorresponding author$$ufzj
000911221 773__ $$0PERI:(DE-600)2700412-0$$a10.1002/ente.202200152$$gVol. 10, no. 8, p. 2200152 -$$n8$$p2200152 -$$tEnergy technology$$v10$$x2194-4288$$y2022
000911221 8564_ $$uhttps://juser.fz-juelich.de/record/911221/files/Energy%20Tech%20-%202022%20-%20Engelpracht%20-%20Waste%20Heat%20to%20Power%20Full%E2%80%90Cycle%20Analysis%20of%20a%20Thermally%20Regenerative%20Flow%20Battery.pdf$$yOpenAccess
000911221 909CO $$ooai:juser.fz-juelich.de:911221$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911221 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000911221 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000911221 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000911221 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zürich$$b3
000911221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000911221 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b4
000911221 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000911221 9141_ $$y2022
000911221 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000911221 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000911221 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000911221 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911221 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000911221 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY TECHNOL-GER : 2021$$d2022-11-12
000911221 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000911221 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000911221 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000911221 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-12
000911221 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000911221 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000911221 920__ $$lyes
000911221 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000911221 9801_ $$aFullTexts
000911221 980__ $$ajournal
000911221 980__ $$aVDB
000911221 980__ $$aUNRESTRICTED
000911221 980__ $$aI:(DE-Juel1)IEK-10-20170217
000911221 981__ $$aI:(DE-Juel1)ICE-1-20170217