001     911221
005     20240712112902.0
024 7 _ |a 10.1002/ente.202200152
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 2128/32523
|2 Handle
024 7 _ |a WOS:000814169800001
|2 WOS
037 _ _ |a FZJ-2022-04526
082 _ _ |a 620
100 1 _ |a Engelpracht, Mirko
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Waste Heat to Power: Full‐Cycle Analysis of a Thermally Regenerative Flow Battery
260 _ _ |a Weinheim [u.a.]
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668403438_11666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Large amounts of waste heat, below 120 °C, are released globally by industry. To convert this low-temperature waste heat to power, thermally regenerative flow batteries (TRFBs) have recently been studied. Most analyses focus on either the discharging or the regeneration phase. However, both phases have to be considered to holistically assess the performance of the flow battery. Therefore, a dynamic, open-access, full-cycle model of a Cu–NH3 TRFB is developed in Modelica and validated with data from the literature. Based on the validated model, a trade-off between power density and efficiency is shown that depends only on the discharging strategy of the flow battery. For a sensible heat source with an inlet temperature of 120 °C and heat transfer at a thermodynamic mean temperature of about 90 °C, the power density reaches 38 W m−2 over a complete cycle, and the efficiency reaches 20% of Carnot efficiency. In a benchmarking study, the power production of the flow battery is shown to already achieve 34% of a fully optimized organic Rankine cycle. Thus, TRFBs require further optimization to become a competitive technology for power production and energy storage from low-temperature waste heat.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kohrn, Markus
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tillmanns, Dominik
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Seiler, Jan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/ente.202200152
|g Vol. 10, no. 8, p. 2200152 -
|0 PERI:(DE-600)2700412-0
|n 8
|p 2200152 -
|t Energy technology
|v 10
|y 2022
|x 2194-4288
856 4 _ |u https://juser.fz-juelich.de/record/911221/files/Energy%20Tech%20-%202022%20-%20Engelpracht%20-%20Waste%20Heat%20to%20Power%20Full%E2%80%90Cycle%20Analysis%20of%20a%20Thermally%20Regenerative%20Flow%20Battery.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911221
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21