000911223 001__ 911223
000911223 005__ 20240712112902.0
000911223 0247_ $$2doi$$a10.1016/j.fluid.2022.113420
000911223 0247_ $$2ISSN$$a0378-3812
000911223 0247_ $$2ISSN$$a1879-0224
000911223 0247_ $$2Handle$$a2128/32525
000911223 0247_ $$2WOS$$aWOS:000821374700006
000911223 037__ $$aFZJ-2022-04528
000911223 082__ $$a540
000911223 1001_ $$0P:(DE-HGF)0$$aFleitmann, Lorenz$$b0
000911223 245__ $$aOptimal experimental design of physical property measurements for optimal chemical process simulations
000911223 260__ $$aNew York, NY [u.a.]$$bScience Direct$$c2022
000911223 3367_ $$2DRIVER$$aarticle
000911223 3367_ $$2DataCite$$aOutput Types/Journal article
000911223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668405886_11666
000911223 3367_ $$2BibTeX$$aARTICLE
000911223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911223 3367_ $$00$$2EndNote$$aJournal Article
000911223 520__ $$aChemical process simulations depend on physical properties, which are usually available through property models with parameters estimated from experiments. The required experimental effort can be reduced using the method of Optimal Experimental Design (OED). OED reduces the number of experiments by minimising the expected uncertainty of the estimated parameters. In chemical engineering, however, the main purpose of an experiment is usually not to determine property parameters with minimum uncertainty but to simulate processes accurately. Therefore, this paper presents the OED of physical property measurements resulting in the most accurate process simulations: c-optimal experimental design (c-OED). c-OED aims to minimise the uncertainty of the process simulation results, which is estimated by linear uncertainty propagation from uncertain property parameters through the process model. We use c-OED to design liquid-liquid equilibrium and diffusion experiments minimising thermodynamic and economic performance metrics of three solvent-based processes. In all three case studies, the c-optimal design substantially reduces the experimental effort for the same simulation accuracy compared to state-of-the-art OED that neglects the process. Our findings are confirmed by a Monte-Carlo simulation of the designed experiments. Furthermore, we assess the limits of c-OED for highly nonlinear process models. Thus, the work shows how c-OED can successfully reduce experimental effort required for accurate process simulations by tailoring experimental designs to the process model.
000911223 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000911223 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911223 7001_ $$0P:(DE-HGF)0$$aPyschik, Jan$$b1
000911223 7001_ $$0P:(DE-HGF)0$$aWolff, Ludger$$b2
000911223 7001_ $$0P:(DE-HGF)0$$aSchilling, Johannes$$b3
000911223 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b4$$eCorresponding author$$ufzj
000911223 773__ $$0PERI:(DE-600)1483573-3$$a10.1016/j.fluid.2022.113420$$gVol. 557, p. 113420 -$$p113420 -$$tFluid phase equilibria$$v557$$x0378-3812$$y2022
000911223 8564_ $$uhttps://juser.fz-juelich.de/record/911223/files/1-s2.0-S0378381222000450-main.pdf$$yOpenAccess
000911223 909CO $$ooai:juser.fz-juelich.de:911223$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911223 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000911223 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zürich$$b0
000911223 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000911223 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000911223 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000911223 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a ETH Zürich$$b3
000911223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b4$$kFZJ
000911223 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)172023$$aRWTH Aachen$$b4$$kRWTH
000911223 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b4
000911223 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000911223 9141_ $$y2022
000911223 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000911223 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000911223 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000911223 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFLUID PHASE EQUILIBR : 2021$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-05
000911223 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-05
000911223 920__ $$lyes
000911223 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000911223 9801_ $$aFullTexts
000911223 980__ $$ajournal
000911223 980__ $$aVDB
000911223 980__ $$aUNRESTRICTED
000911223 980__ $$aI:(DE-Juel1)IEK-10-20170217
000911223 981__ $$aI:(DE-Juel1)ICE-1-20170217