001     911223
005     20240712112902.0
024 7 _ |a 10.1016/j.fluid.2022.113420
|2 doi
024 7 _ |a 0378-3812
|2 ISSN
024 7 _ |a 1879-0224
|2 ISSN
024 7 _ |a 2128/32525
|2 Handle
024 7 _ |a WOS:000821374700006
|2 WOS
037 _ _ |a FZJ-2022-04528
082 _ _ |a 540
100 1 _ |a Fleitmann, Lorenz
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Optimal experimental design of physical property measurements for optimal chemical process simulations
260 _ _ |a New York, NY [u.a.]
|c 2022
|b Science Direct
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668405886_11666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Chemical process simulations depend on physical properties, which are usually available through property models with parameters estimated from experiments. The required experimental effort can be reduced using the method of Optimal Experimental Design (OED). OED reduces the number of experiments by minimising the expected uncertainty of the estimated parameters. In chemical engineering, however, the main purpose of an experiment is usually not to determine property parameters with minimum uncertainty but to simulate processes accurately. Therefore, this paper presents the OED of physical property measurements resulting in the most accurate process simulations: c-optimal experimental design (c-OED). c-OED aims to minimise the uncertainty of the process simulation results, which is estimated by linear uncertainty propagation from uncertain property parameters through the process model. We use c-OED to design liquid-liquid equilibrium and diffusion experiments minimising thermodynamic and economic performance metrics of three solvent-based processes. In all three case studies, the c-optimal design substantially reduces the experimental effort for the same simulation accuracy compared to state-of-the-art OED that neglects the process. Our findings are confirmed by a Monte-Carlo simulation of the designed experiments. Furthermore, we assess the limits of c-OED for highly nonlinear process models. Thus, the work shows how c-OED can successfully reduce experimental effort required for accurate process simulations by tailoring experimental designs to the process model.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Pyschik, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wolff, Ludger
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schilling, Johannes
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 4
|e Corresponding author
|u fzj
773 _ _ |a 10.1016/j.fluid.2022.113420
|g Vol. 557, p. 113420 -
|0 PERI:(DE-600)1483573-3
|p 113420 -
|t Fluid phase equilibria
|v 557
|y 2022
|x 0378-3812
856 4 _ |u https://juser.fz-juelich.de/record/911223/files/1-s2.0-S0378381222000450-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911223
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-HGF)0
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FLUID PHASE EQUILIBR : 2021
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21