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a b s t r a c t 

Chemical process simulations depend on physical properties, which are usually available through prop- 

erty models with parameters estimated from experiments. The required experimental effort can be re- 

duced using the method of Optimal Experimental Design (OED). OED reduces the number of experiments 

by minimising the expected uncertainty of the estimated parameters. In chemical engineering, however, 

the main purpose of an experiment is usually not to determine property parameters with minimum un- 

certainty but to simulate processes accurately. Therefore, this paper presents the OED of physical prop- 

erty measurements resulting in the most accurate process simulations: c-optimal experimental design 

(c-OED). c-OED aims to minimise the uncertainty of the process simulation results, which is estimated 

by linear uncertainty propagation from uncertain property parameters through the process model. We 

use c-OED to design liquid-liquid equilibrium and diffusion experiments minimising thermodynamic and 

economic performance metrics of three solvent-based processes. In all three case studies, the c-optimal 

design substantially reduces the experimental effort for the same simulation accuracy compared to state- 

of-the-art OED that neglects the process. Our findings are confirmed by a Monte-Carlo simulation of the 

designed experiments. Furthermore, we assess the limits of c-OED for highly nonlinear process models. 

Thus, the work shows how c-OED can successfully reduce experimental effort required for accurate pro- 

cess simulations by tailoring experimental designs to the process model. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

For the simulation and design of chemical processes, estima- 

ion of physical properties is crucial [1] . In particular, thermody- 

amic properties, e.g. describing phase behaviour, largely influence 

hemical processes [2] . Therefore, accurate simulations in chemical 

ngineering require high-quality property data. Today, the basis for 

ccurate property parameter estimation is still mostly experimen- 

ation [3] . The experimental data is then usually used to fit pa- 

ameters in physical property models to allow for interpolation or 

ven extrapolation in the simulations. However, experiments con- 

ume time and large amounts of materials causing high costs for 
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stimating parameters in property models. Therefore, experimen- 

al effort should be minimised by selecting only experiments that 

rovide the most information and thus lead to the most accurate 

rocess simulations. 

Selecting optimal experiments is an important topic and has 

ed to establishing the theory of model-based optimal experi- 

ental design (OED) [4,5] . OED identifies optimal experiments by 

nalysing the uncertainty propagation from experimental measures 

o estimated property parameters through a predefined model of 

he experiment. So far, OED has been applied for the estimation 

f important thermodynamic properties in chemical engineering, 

uch as reaction kinetics [6,7] , phase equilibria [8,9] , diffusion co- 

fficients [10] or adsorption isotherms [7] . 

Generally, two approaches for OED can be distinguished: (1) 

tatistical OED [5] and (2) bounded-error OED [11] . Statistical OED 

inimises the parameter variances considering a statistical error 

istribution [7] . In contrast, bounded-error OED minimises the fea- 

ible parameter set consistent with the measurement uncertainty 
under the CC BY-NC-ND license 
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Nomenclature 

α scalar measure describing the center of the tie lines 

A matrix containing the sensitivities of the thermo- 

dynamic model g with respect to the experimental 

measurements w 

B matrix containing the sensitivities of the thermody- 

namic model g with respect to the parameters θ
c vector containing the sensitivities of the process 

model h with respect to the parameters θ
F Fisher-Information-Matrix 

g thermodynamic model describing the experiments 

h process model result 

κ parameters of the process model 

N number of distinct experimental settings 

N exp number of experiments 

Q min minimum reboiler energy demand calculated by 

pinch-based distillation model 

σw 

standard deviation of measurements 

S min minimum solvent demand calculated by pinch- 

based extraction model 

θ thermodynamic model parameters 
ˆ θ, ˆ κ initial or predefined parameters of θ or κ
�0 parameter variance-covariance matrix from previ- 

ously performed experiments 

V w 

variance-covariance matrix of the experimental 

measurements w 

V δ variance-covariance matrix of the parameters δ
v i normalised weight of experiment i 

w experimental measurement results 

ξ design vector describing an experimental design 

ξ
∗

optimal experimental design vector 

ξcon conventional experimental design 

ξ
∗
c , ξ

∗
D c- and D-optimal experimental design, respectively 

z i experimental settings for experiment i 

ζc , ζD c- and D-efficiency, respectively 

iven by upper and lower bounds on the errors [7] . As a result,

ounded-error OED requires fewer assumptions on errors than sta- 

istical OED but instead needs to solve a challenging bilevel opti- 

isation problem. For many experiments in chemical engineering 

roblems, the measurement uncertainty is known [12] and justi- 

es the use of statistical OED. Thus, in this work, we focus on the 

ore popular statistical OED. 

In statistical OED, the objective function is usually a scalar 

easure of the parameter variances representing parameter uncer- 

ainty [5] . Several well-known objective functions have been devel- 

ped to determine the experimental designs leading to the most 

ccurate parameters [5] , e.g. minimising the average uncertainty of 

ll parameters (A-optimality); minimising the uncertainty of the 

ost uncertain parameter (E-optimality); or minimising a gener- 

lised variance of the parameters (D-optimality). 

However, in chemical engineering, the primary purpose of ex- 

eriments is rarely to gain knowledge of parameters themselves. 

nstead, chemical engineers, e.g. seek to gain thermodynamic in- 

ights, predict phase behaviours or simulate a process. Thus, the 

xperimental design needs to reflect the model application [13] . 

ecently, OED methods have focused on incorporating the purpose 

f parameter estimation. [8] employed G-optimal experimental de- 

ign that minimises the expected variance of the model predic- 

ions of the experiments of uncertainties in property parameters. 

n particular, [8] minimised the predicted variance of phase com- 

ositions calculated from a liquid-liquid equilibrium model instead 

f the property parameters of the used activity coefficient model. 
2 
Similarly, for process simulations, the impact of the property 

arameters on the simulation results is usually more important 

han the uncertainty of the property parameters. If the governing 

henomena of the chemical system are known and a thermody- 

amic model capable to describe these phenomena is selected, the 

urpose of experimentation is accuracy increase of the simulation 

hrough (re-)parametrisation. However, an experimental design for 

he most accurate property parameters does not ensure the low- 

st uncertainty in process simulation. Thus, the property parameter 

se in a process model needs to be considered within the optimal 

xperimental design. 

For this purpose, [14] recently presented OED for experiments 

n a plant or mini plant using a flowsheet simulator. In their work, 

he optimal experimental design considers property parameter use 

y employing the process model already for the parameter estima- 

ion. The authors show that their method improves model discrim- 

nation and parameter estimation. However, the method requires 

xpensive and time-consuming plant experiments instead of small 

ab-scale experiments. 

For lab-scale experiments and bounded-error OED, Walz and 

oworkers accounted for property parameter use in process sim- 

lation and design [7,15] . The authors successfully show how to 

educe experimental effort without changing the reliability of the 

rocess model results. However, their method requires solving a 

hallenging bi- or trilevel optimisation problem and is currently 

imited to small process models. 

For statistical OED and lab-scale experiments, a first approach 

as published by Recker et al. [16] . The authors considered the 

ensitivities of the process to the property parameters by heuris- 

ically scaling the A-optimality criterion and successfully opti- 

ised the experimental design to estimate reaction kinetics for a 

eaction-separation process. A similar approach was proposed by 

ucia and Paulen [17] for robust nonlinear model predictive con- 

rol. Using the sensitivities of the optimal robust economic objec- 

ive value to parametric uncertainty, the authors scaled a modified 

-criterion. Kaiser and Engell [18] and Kaiser et al. [19] linked OED 

or parameter estimation with superstructure optimisation of early 

rocess design stages [18,19] . For this purpose, the authors perform 

lobal sensitivity analysis of optimisation results towards the un- 

ertain parameters using heuristically scaled D-optimality [18] and 

euristically scaled A-optimality [19] . 

However, even though these heuristic approaches provide a 

reakthrough by combining OED and process simulation, heuristic 

esigns likely differ from optimal designs with full consideration of 

he process [20] . Instead, full consideration of process information 

equires uncertainties of property parameters to propagate through 

he process model, and the uncertainties of the process model re- 

ults should be used as the OED objective. 

In pioneering work, the van Impe group integrated experimen- 

al design and nonlinear model predictive control [21–23] . The au- 

hors mathematically derived an economic process objective func- 

ion for experimental design by weighted A-optimality. They de- 

ned the OED objective as the minimisation of the expected opti- 

ality gap of the parametric optimal control problem via second- 

rder derivatives of the Lagrange function [21] . The approach was 

emonstrated successfully to tailor experimental designs for esti- 

ating reaction rate constants to control problems of bioreactors. 

Similarly, for the most accurate chemical process simulations, 

he OED objective needs to be defined in terms of process un- 

ertainties to capture the property parameter use in the process 

imulation. The idea of optimising the uncertainty of a simulation 

utput as the objective for OED can be formulated as the so-called 

-optimal experimental design (c-OED) [4] . In general, c-OED min- 

mises a linear combination of model parameter variances as the 

ptimisation objective [4] . A linear combination of model param- 

ters corresponds to the linear variance propagation of these pa- 
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ameters through a model if the weights of the linear combina- 

ion are the first-order derivatives of the model with respect to 

he model parameters. Therefore, c-OED can reflect the property 

arameter use in a chemical process simulation directly in the ob- 

ective, e.g. the impact of NRTL-parameters on the total process en- 

rgy demand. 

Interestingly, c-optimality is mathematically a special case of 

eighted A-optimality [24] . Thus, c-OED is connected to the mod- 

fied A-optimal criterion from [21] . In contrast to [21] , c-OED 

eights parameter uncertainties by first-order derivatives instead 

f scaling the OED problem by second-order derivatives of the La- 

range function of an optimisation problem. Therefore, c-OED is 

uitable for chemical process simulations, while the method from 

ouska et al. [21] is tailored to equation-based optimisation prob- 

ems and requires the Lagrange function of the optimisation prob- 

em. 

To date, c-optimality has only been applied for the optimal ex- 

erimental design of clinical trials for dose-finding in the area of 

oxicology studying [25–27] or the description of viral dynamics 

nd pharmacokinetics [28] , but not in chemical engineering for 

rocess flowsheet simulation. However, in particular for physical 

roperties for process flowsheet simulations, experiments for pa- 

ameter estimation serve a purpose beyond the pure parameter 

nowledge, which needs to be reflected by the OED objective. 

In this work, we therefore investigate OED using c-optimality 

or accurate chemical flowsheet simulations. Preliminary results of 

his work have been published in a conference paper, in which 

e discussed heuristically scaled OED for process simulations 

20] . Here, we focus on c-OED for chemical engineering prob- 

ems ( Section 2 ) and demonstrate the benefit of c-OED for ex- 

raction and extraction-distillation process models ( Section 3 ). We 

esign experiments for the estimation of parameters for activity 

oefficient and diffusion models, considering their use in a flow- 

heet simulation. We compare the c-optimal experimental design 

ith the state-of-the-art OED in chemical engineering for param- 

ter accuracy (D-optimal experimental design) and conventionally 

sed experimental designs without OED. Finally, we validate OED 

heory by simulation of experiments using Monte-Carlo analysis 

 Section 4 ) before concluding this paper for future work. 

. Background and method: optimal experimental design using 

he c-optimality criterion 

In this section, we briefly explain the state-of-the-art theory 

nd fundamentals of OED. We focus on c-OED, which we adapt to 

he estimation of thermodynamic properties for chemical process 

imulations. We start with deriving the c-optimal objective func- 

ion ( Section 2.1 ) before we explain how to solve OED problems 

 Section 2.2 ). In Section 2.3 , we introduce quality measurement cri- 

eria to compare and validate the results in Section 3 . 

.1. Derivation of the c-optimal objective function 

In general, the goal of statistical OED is to minimize parameter 

ncertainty. For this purpose, the objective is defined as a measure 

f the variance-covariance matrix of parameters V θ . The parameter 

ariance-covariance matrix V θ can be approximated by the product 

f the Fisher-Information-Matrix F ( ̂ θ, ξ) and the number of exper- 

ments N exp [29] : 

 θ ≈
[ 

N exp F 

(
ˆ θ, ξ

)] −1 

(1) 

s the parameter variance-covariance matrix V θ is proportional 

o the inverse of F ( ̂ θ, ξ) , OED usually focuses on optimising the

isher-Information-Matrix F ( ̂ θ, ξ) by selecting an optimal design ξ
∗

hat contains the distribution of experiments independent from the 
3 
otal number of experiments N exp . The Fisher-Information-Matrix 

 ( ̂ θ, ξ) depends on the chosen experimental design ξ and an ini- 

ial parameter guess ˆ θ if the model is not linear in the param- 

ters [29] . For example, for OED of phase equilibria measure- 

ents to parametrise the NRTL-model [30] , an initial set of NRTL- 

arameters has to be provided. 

We represent every experimental design ξ by a design vector of 

distinct experimental settings z i , e.g. temperature and pressure 

f each experiment, and corresponding N normalised weights v i , 
hich indicate the share of the total experimental effort [24] : 

= 

{
z 1 z 2 · · · z N 
v 1 v 2 · · · v N 

}
with 

N ∑ 

i =1 

v i = 1 (2) 

he number of distinct experimental settings N is usually not 

nown a priori and a result of OED besides the specification of the 

xperimental settings. 

The Fisher-Information-Matrix F ( ̂ θ, ξ) is calculated from the 

nderlying model of the experiment g ( z , w , θ) [29] . The model 

 ( z , w , θ) describes the experiments by relating the parameters θ
or given experimental settings z to the experimental measure- 

ent results w . For flowsheet simulation of chemical processes, for 

xample, the model g ( z , w , θ) describes the experiments to mea- 

ure liquid-liquid-equilibria or diffusion experiments. The experi- 

ents are characterised by experimental settings z given as input 

rom the experimental design ξ, e.g. temperatures and concentra- 

ions. The experimental measurements w are, for example, mea- 

ured phase compositions. 

The Fisher-Information-Matrix F ( ̂ θ, ξ) for a given experimental 

esign ξ is calculated by multiplying the variance-covariance ma- 

rix of the experimental measurements V w 

by the model sensitiv- 

ty to experimental measurements A μ and the model sensitivity to 

arameters B μ for each experiment μ of the experimental design 

[29] : 

 

(
ˆ θ, ξ

)
= 

N ∑ 

μ=1 

v μ B 

T 
μ ( A μ V w 

A 

T 
μ) −1 B μ + �−1 

0 (3) 

ith the local model sensitivity to experimental measurements: 

 μ = 

∂ g 

∂ w 

∣∣∣∣
w μ, ̂ θ

and the local model sensitivity to parameters: B μ = 

∂ g 

∂ θ

∣∣∣∣
w μ, ̂ θ

The variance-covariance matrix of the experimental measure- 

ents V w 

is a key input parameter, which needs to be spec- 

fied a priori from uncertainty measurements highlighting the 

eed for uncertainty reporting as part of good reporting prac- 

ice for property measurements [31] . Already available informa- 

ion on the parameter variance-covariance matrix, e.g. from previ- 

usly performed experiments or the literature, can be included for 

he design of further experiments in the Fisher-Information-Matrix 

 

(
ˆ θ, ξ

)
through �0 since F 

(
ˆ θ, ξ

)
is additive [24] . In this work, no 

reviously performed experiments are assumed; thus, �−1 
0 is not 

urther considered. 

To account for the parameter use, the c-optimal design objec- 

ive is to minimise a linear combination of the parameter vari- 

nces, which is calculated by the product of a vector c ( ̂ θ) and 

he inverse of the Fisher-Information-Matrix 

[ 
F ( ̂ θ, ξ) 

] −1 

[4] . The 

-optimal experimental design ξ
∗
c is the solution to this optimiza- 

ion problem: 

∗
c = arg min 

ξ

c ( ̂  θ) T 
[ 

F ( ̂  θ, ξ) 
] −1 

c ( ̂  θ) (4) 
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p

a

or considering the property parameter use in a process simu- 

ation, c ( ̂ θ) should reflect the linearised variance propagation of 

he property parameter uncertainties through the process model. 

herefore, the first-order sensitivities of a scalar simulation output 

o property parameters are chosen as weights of the linear com- 

ination. Thereby, the property parameters are weighted by their 

mpact on the process model, e.g. the sensitivity of total process 

nergy demand with respect to NRTL-parameters. The variance of 

 simulation output is thus obtained as c-OED objective. We calcu- 

ate the vector c ( ̂ θ) from the sensitivities of a scalar result of the

rocess model h 
(
θ, κ

)
to property parameters θ: 

 ( ̂  θ) = 

∂h 

(
θ, κ

)
∂ θ

∣∣∣∣∣
ˆ θ, ̂ κ

(5) 

s both the model sensitivities for the Fisher-Information-Matrix 

 ( ̂ θ, ξ) and the process model sensitivities for the vector c ( ̂ θ) are

alculated for given initial parameters ˆ θ, the resulting optimal ex- 

erimental design is locally optimal for the given initial parame- 

ers ˆ θ. The vector c ( ̂ θ) can also depend on further parameters, e.g. 

pecifications of the process model κ, resulting in an additional de- 

endence of the optimal experimental design on these parameters. 

hese additional specifications, such as operation settings, must be 

nown a priori, e.g. from experience, known operation of similar 

ystems or process design. 

In contrast to c-OED, state-of-the-art OED criteria do not con- 

ider the process sensitivity to the property parameters expressed 

y c ( ̂ θ) . For example, the commonly used D-optimal experimen- 

al design yields the most accurate parameters by using only 

he Fisher-Information-Matrix. A D-optimal experimental design ξ
∗
D 

inimises the uncertainty of all parameters by maximising the de- 

erminant of the Fisher-Information-Matrix [29] : 

∗
D = arg max 

ξ

log 

[ 
det 

(
F 

(
ˆ θ, ξ

))] 
(6) 

enerally, statistical OED as presented here requires several as- 

umptions on the model and the errors that have been sum- 

arised, e.g. in [29] or [8] : (1) The model parameters θ need to 

e identifiable, and the true values for the measurements need to 

ead to the true parameter values, i.e. no model bias is assumed. 

2) No errors are assumed in the independent variables, i.e. the 

xperimental settings z , and no systematic errors are assumed in 

he measured variables w . (3) Errors in different experiments are 

ndependent of each other and normally distributed with the same 

ovariance matrix V w 

. 

Importantly, the thermodynamic model g and the experimental 

easurements w need to be carefully selected since multiple op- 

ions exist for the model and the measured quantities. For exam- 

le, van Ness and coworkers showed that isobaric vapour-liquid- 

quilibrium (VLE) measurement usually lead to large uncertainties 

nd model errors in contrast to isotherm VLE experiments [32,33] . 

sobaric VLEs rely on vapour pressure equations used as input. If 

nadequately parametrized, this input can cause a model bias in 

he temperature dependence of the vapour pressure. The intrinsic 

odel bias then leads to incorrect parameters - independent of the 

xperimental design. 

.2. Solving OED problems 

The computation of the OED objectives requires sensitivities. 

he model sensitivities of the thermodynamic model to experi- 

ental measurements and property parameters as well as the sen- 

itivities of the process model to property parameters are calcu- 
4 
ated by first-order numerical differentiation using central differ- 

nces. To ensure stable numerical differentiations, we performed a 

arameter study and chose as the step size of 1 × 10 −7 for the cal-

ulation of the Fisher-Information-Matrix via imaginary variables 

34] and a stepsize of 1 × 10 −4 for the sensitivities of the process 

odel. 

To solve optimal experimental design problems, several general- 

urpose algorithms have been proposed in the literature [35] . In 

his work, we use the general algorithm for computing optimal de- 

igns with monotonic convergence by Yu [36] . 

The algorithm yields optimal experimental designs with a con- 

inuous distribution of experimental effort, also called continuous 

esigns [4] . A continuous design quantifies which share of the to- 

al experimental effort should be spent on which measurements. 

ontinuous designs suit as targets for experiments in the labo- 

atory, as these designs specify only relative experimental effort 

or an infinite number of experiments. In practice, only a lim- 

ted number of experiments can be performed. Therefore, imple- 

entable experimental designs for the laboratory, so-called exact 

esigns, can be calculated for a predefined number of experiments, 

.g. by rounding the continuous designs [4] . However, as round- 

ng does not guarantee close approximation of continuous designs 

4] , various algorithms for the calculation of exact designs have 

een developed, e.g. non-sequential algorithms [37] or exchange 

ethods [38] . In the validation section of this paper, we use a 

on-sequential algorithm for exact optimal designs as proposed by 

ynn [37] ( Section 4 ). Exact designs can also be calculated con- 

idering previous experiments or literature data (cf. Eq. (3) ), as fre- 

uently required in practice. The exact design then yields the opti- 

al subsequent experiments, as demonstrated by [9] . 

.3. Comparison of experimental designs 

Experimental designs can be compared by OED-efficiencies, 

hich measure the effectiveness of an experimental design ξ com- 

ared to an optimal design ξ
∗
. In this work, we focus on c- 

fficiency as a measure of process simulation accuracy and D- 

fficiency as a measure of parameter accuracy. The efficiencies are 

efined based on the c-optimal ξ
∗
c or D-optimal design ξ

∗
D as [4] : 

– c-efficiency: ζc ( ξ) = 

c ( ̂ θ) T F ( ̂ θ, ξ
∗
c ) 

−1 c ( ̂ θ) 

c ( ̂ θ) T F ( ̂ θ, ξ) −1 c ( ̂ θ) 

– D-efficiency: ζD ( ξ) = 

⎡ 

⎣ 

det 

(
F 

(
ˆ θ, ξ

))

det 

(
F 

(
ˆ θ, ξ

∗
D 

))
⎤ 

⎦ 

1 

n parameter 

ith n parameter for the number of estimated model parameters. The 

fficiencies are valuable metrics since they allow to determine the 

umber of experiments to achieve a particular accuracy. The in- 

erse of the c- or D-efficiency describe how many experiments are 

dditionally required for the same accuracy compared to an opti- 

al design of the respective criterion. For example, a design with 

 c-efficiency ζc = 0 . 25 needs 4 times as many experiments for the 

ame process simulation accuracy than a c-optimal design. 

. Case studies 

The c-OED is applied by computing continuous c-optimal ex- 

erimental designs for liquid-liquid-equilibrium and diffusion ex- 

eriments for two process models of solvent-based processes as 

n example: 

1. Pinch-based process models for extraction and distillation 

[39,40] 
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Fig. 1. Experimental designs for LLE experiments for the extraction process: (A) Lo- 

cation of LLE experiments. (B) Share of experimental effort. Part A of the figure also 

shows the scalar quantity α, which characterises the centre of the tie lines and the 

total composition of an experiment. 
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2. Countercurrent rate-based extraction model with the HTU-NTU 

model for sizing [41,42] 

In both case studies, the thermodynamic model for liquid- 

iquid-equilibrium measurements is taken from [8] and uses the 

RTL activity coefficient model [30] . For the HTU-NTU sizing of the 

xtraction column, diffusion coefficients are additionally required 

nd assumed to be measured using a closed cell with fixed ge- 

metries as the experimental setup [10] . 

We exemplify c-OED in this paper for the ternary system water- 

cetone-toluene in both case studies. We limit the study to ternary 

ystems for ease of interpretation and visualisation. However, the 

ethod of c-OED is not limited to ternary systems but is applicable 

or multi-component systems with more than three components. 

The chemical system water-acetone-toluene is a model system 

f great interest in research and industry since it is applicable for 

tudying various processes such as extraction and distillation [43] . 

he components represent a variety of chemical interactions: Wa- 

er and toluene are almost completely immisci-ble since water is 

 highly polar molecule, whereas toluene is highly unpolar. Ace- 

one is mildly polar and, thus, soluble in both water and toluene. 

oluene is consequently a suitable solvent for the extraction of 

cetone from water since only acetone is attracted to the extract 

oluene phase leading to a selective separation. Therefore, the sys- 

em is well suited to study the estimation of binary interaction pa- 

ameters for extraction and extraction-distillation processes. 

We compare the continuous c-optimal experimental designs as 

argets for maximum experimental efficiency with state-of-the- 

rt OED for maximum parameter precision (D-optimal experimen- 

al design) and a conventional experimental design without OED, 

hich equally distributes the experimental effort over the design 

pace. Numerical details on the experimental designs and the ini- 

ial property parameters for each design can be found in the Sup- 

orting Information. 

.1. Pinch-based process models for extraction and distillation 

For the pinch-based process models, we investigate two process 

owsheets: (1) An isothermal extraction modelled by one extrac- 

ion column and (2) a hybrid extraction-distillation modelled by an 

xtraction column followed by a distillation column. The goal for 

ED is to provide optimal liquid-liquid equilibrium measurements 

o estimate isothermal NRTL-parameters for the extraction process 

nd temperature-dependent NRTL-parameters for the extraction- 

istillation process. 

.1.1. OED for estimation of isothermal NRTL- τ -parameters for an 

xtraction column 

As the first case study, we investigate the extraction of ace- 

one from aqueous solution at 25 ◦C using toluene as a solvent. 

he extraction column is modelled using a pinch-based process 

odel, taking NRTL-parameters as input [40] . Pinch-based process 

odels assume infinite columns operating at vanishing thermody- 

amic driving force but consider the full non-ideal thermodynam- 

cs. Therefore, the model yields the minimum solvent demand S min 

equired for this separation. In particular, for the selection of an 

xtraction solvent, the minimum solvent demand characterises the 

xtraction process as the performance metric h . 

We aim to determine the minimum solvent demand S min for 

xtraction as accurately as possible. For this purpose, we use OED 

o decide which LLE experiments should be performed to esti- 

ate the six NRTL- τ -parameters for the binary interactions. LLE 

xperiments are typically performed by equilibrating a liquid mix- 

ure with known overall composition and miscibility gap in an 

quilibrium cell. After equilibration, samples are drawn from each 

iquid phase and the molar composition of each phase is mea- 
5 
ured. Today, mixing, equilibration, sample drawing and measuring 

s preferably integrated in an automated set-up [44–46] . 

For simplicity, we assume that LLE experiments are performed 

ith the overall composition of the components that corresponds 

o the centre of the tie lines. The overall compositions of all exper- 

ments lie on a line running from the center of the miscibility gap 

f the binary subsystem to the critical point (cf. Fig. 1 A). Each posi-

ion on this line is labeled by the scalar quantity α defined linearly 

rom the beginning in the binary subsystem ( α = 0 ) to the end at

he critical point ( α = 1 ), which thus defines each experiment ex- 

ctly [8] . As a result, the three-dimensional representation of the 

verall composition of the experiment is precisely described by the 

arameter α, without simplifying the problem. Measurements are 

hallenging close to the critical point. In addition, the NRTL model 

s known to describe the phase equilibrium poorly close to the crit- 

cal point, leading to model bias. To ensure experimental feasibility 

nd applicability of the NRTL-model, we limit α to a maximum of 

.9. Since we investigate ternary mixtures in this work, two molar 

ractions are measured for each experiment and each liquid phase 

cf. thermodynamic model of LLE experiments by Dechambre et al. 

8] ). For each measurement, we assume the same constant mea- 

urement uncertainty σw 

= 0 . 005 (cf. Section 4 ). 
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Table 1 

c- and D-efficiencies ζc and ζD of the c-optimal ξ
∗
c , D-optimal ξ

∗
D and equidistantly 

distributed conventional ξcon experimental designs for the estimation of isothermal 

NRTL- τ -parameters and use in the pinch-based extraction process model. 

Design ξ c-efficiency ζc D-efficiency ζD 

c-optimal ξ
∗
c 1 0.44 

D-optimal ξ
∗
D 0.36 1 

conventional ξcon 0.10 0.56 
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The c-optimal experimental design selects three distinct loca- 

ions for measurements ( Fig. 1 B). About 80 % of the experimen- 

al effort is placed near the operating range of the extraction col- 

mn at α = 0 . 22 . However, no experiments are performed in the 

ctual operating range of the extraction column. Instead, 20 % of 

he experimental effort is placed in the high-curvature region of 

he binodal curve at α > 0 . 65 , in particular, 6 % at the design space

oundary at α = 0 . 9 . Thus, the c-optimal experimental design pro- 

ides another argument to support the previous conclusions that 

he process operation settings should not be mimicked or copied 

or for physical property experiments [32] . 

The D-optimal experimental design similarly focuses on three 

istinct locations for measurements. However, in contrast to the c- 

ptimal design, 65 % of the experiments are placed in the high- 

urvature region of the binodal curve, as already discovered by 

echambre et al. [8] . In the high-curvature region of the binodal 

urve, the phase equilibrium model is highly sensitive to the prop- 

rty parameters. Thus, placing experiments in the high-curvature 

egion leads to low uncertainty in the parameter estimation. How- 

ver, the c-efficiency of the D-optimal design is only ζ D 
c = 0 . 36 

 Table 1 ). Consequently, about three times more D-optimal than c- 

ptimal experiments are required to achieve the same accuracy in 

he process simulation. 

For an equidistantly distributed conventional experimental de- 

ign, we specify three experimental settings since the c- and D- 

ptimal designs yielded three distinct settings. The experimen- 

al effort is equally distributed across all experiments. The con- 

entional design yields a low c-efficiency of only ζ con 
c = 0 . 10 de- 

pite placing experimental effort within the operating range of 

he extraction column in the solvent-carrier binary subsystem. As 

 result, the conventional design requires about ten times more 

xperiments for the same process simulation accuracy as the c- 

ptimal design. Thus, the c-optimal experimental design promises 

o achieve a significant reduction in experimental effort. 

In terms of parameter precision, the c-optimal design scores 

 D-efficiency of ζ c 
D 

= 0 . 44 . In contrast, the conventional design 

ields a D-efficiency of ζ con 
D 

= 0 . 56 and, thus, returns more ac- 

urate parameter values than the c-optimal design. The low D- 

fficiency of the c-optimal design illustrates the varying influence 

f each property parameter on simulation accuracy. For the extrac- 

ion process, not all parameters of the thermodynamic model are 

qually important. For example, the binary interactions between 

olvent and solute as well as carrier and solute are of major impor- 

ance. However, the simulation results are much less sensitive to 

he solvent-carrier interaction parameters, although low miscibility 

etween solvent and carrier resulting from the solvent-carrier in- 

eractions is key for the extraction process. Nevertheless, highly ac- 

urate estimation of the solvent-carrier interaction is not required 

or accurate process simulations since small inaccuracies in the 

olvent-carrier interaction parameters still lead to low miscibility 

etween solvent and carrier. Therefore, spending additional exper- 

mental effort on increasing the parameter precision of these less 

mportant parameters for the simulation reduces c-efficiency. In- 

tead, the experimental effort is more efficiently spent on exper- 

ments targeting the more influential property parameters of the 
6 
imulation. For example, near the operating range of the extrac- 

ion column, the thermodynamic model of the LLE experiments is 

ost sensitive to solvent-solute interaction, while the sensitivity to 

olvent-carrier interactions is low. Therefore, the c-optimal design 

laces the majority of the experimental effort on the experimental 

ettings near the operating range. However, exclusive focus on the 

roperty parameters most important for the chemical process sim- 

lation neglects the accuracy increase resulting from experiments 

or overall high parameter precision. Therefore, the c-optimal de- 

ign also includes experiments for overall parameter accuracy such 

s experiments in the high-curvature region of the binodal curve 

t α = 0 . 9 . 

.1.2. OED for estimation of temperature-dependent 

RTL- τ -parameter from LLE experiments for a hybrid 

xtraction-distillation process 

As the second case study, we extend the extraction process 

rom Section 3.1.1 by a distillation column. First, acetone is ex- 

racted from the aqueous solution using toluene before acetone 

s separated from the extract using distillation. Both the extrac- 

ion and distillation columns are modelled using a pinch-based 

rocess model [39,40] . For this case study, the key performance 

etric h is the minimum reboiler energy demand of the distilla- 

ion column Q min that we want to estimate as accurately as possi- 

le. We estimate two isothermal and two temperature-dependent 

RTL- τ -parameters for each binary interaction pair because of the 

emperature gradient in the distillation column. Therefore, in this 

ase study, c-OED is used to determine at which temperatures 

nd concentrations LLE experiments should be performed to cal- 

ulate the minimum reboiler energy demand Q min as accurately 

s possible. For the demonstration of the c-OED, we limit the de- 

igned experiments to LLE-experiments. In practice, however, the 

RTL parameters should be estimated through liquid-liquid -and 

apour-liquid-equilibrium experiments for higher accuracy [47] . As 

n Section 3.1.1 , we limit the design space to concentrations corre- 

ponding to α < 0 . 9 to ensure experimental feasibility and appli- 

ability of the NRTL-model, and now also consider a temperature 

ange of 10–80 ◦C. 

The experimental designs consist of a non-trivial combination 

f nine experimental settings for the c-optimal and eight for the 

-optimal design across the whole design space ( Fig. 2 ). Both the 

- and D-optimal experimental designs mainly focus on the bound- 

ries of the design space but avoid experiments at and near the bi- 

ary subsystem of solvent and carrier with α < 0 . 2 ( Fig. 2 ). At the

oundaries, where temperature is high or near the critical point at 

igh α, the thermodynamic model is particularly sensitive to the 

roperty parameters reducing parameter uncertainty more than in 

he centre of the design space. The binary subsystem is avoided for 

ll temperatures since both isothermal and temperature-dependent 

arameters are more accurately estimated in the high-curvature 

egion of the binodal curve (cf. Section 3.1.1 ). 

The c-optimal design favours experiments at lower α than the 

-optimal design as already discovered in the isothermal case 

tudy ( Section 3.1.1 ), e.g. the total experimental effort spent in the 

-optimal design for α < 0 . 6 equals 56 %. At low α, the binary in-

eractions between solvent and solute as well as carrier and so- 

ute can be more accurately determined, which is crucial for a 

igh process simulation accuracy. In contrast, the D-optimal de- 

ign places only 27 % of the total experimental effort on mea- 

urements with α < 0 . 6 . Similarly to the estimation of isother- 

al NRTL-parameters, experiments at higher α are important for 

igher parameter precision. 

To capture the temperature dependency accurately, the c- 

ptimal design places a large share of the experimental effort at 

xperiments with higher temperatures: 78 % of the total experi- 

ental effort is spent for temperatures higher than 60 ◦C. The fo- 
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Fig. 2. Experimental designs for LLE experiments for the extraction-distillation process. The size of the circles corresponds to the share of the experimental effort. The grey 

box indicates the design space. 

Table 2 

c- and D-efficiencies ζc and ζD of the c-optimal ξ
∗
c , D-optimal ξ

∗
D and equidis- 

tantly distributed conventional ξcon experimental designs for the estimation of 

temperature-dependent NRTL- τ -parameters and use in the pinch-based extraction- 

distillation process model. 

Design ξ c-efficiency ζc D-efficiency ζD 

c-optimal ξ
∗
c 1 0.62 

D-optimal ξ
∗
D 0.61 1 

conventional ξcon 0.24 0.55 
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us on higher temperatures in the c-optimal design can be ex- 

lained by the temperature glide from the condenser ( T cond = 

4 ◦C) to the reboiler ( T reb = 110 ◦C) in the distillation column.

or an accurate description of distillation, capturing the temper- 

ture dependence of the NRTL parameters is important, and at 

igher temperatures, the temperature-dependent parameters are 

ore sensitive to the measurements. 

The D-optimal design only allocates 43 % of the experimental 

ffort f or temperatures higher than 60 ◦C to balance the estimation 

f isothermal and temperature-dependent NRTL-parameters result- 

ng in a c-efficiency of ζ D 
c = 0 . 61 ( Table 2 ). Compared to the D-

ptimal design for isothermal NRTL-parameters in Section 3.1.1 , the 

-efficiency of the D-optimal design increases by 69 %. Therefore, 

or the extraction-distillation process, parameter precision is gen- 

rally more important for accurate process simulation than for the 

xtraction only. As a result, parameter precision as measured by 

he D-efficiency also increases to ζ c 
D 

= 0 . 62 for the c-optimal de- 

ign by about 40 % compared to the c-optimal design for isother- 

al NRTL-parameters. 

For the conventional design, we assume equally distributed ex- 

erimental effort on eight experimental settings across the design 

pace ( Fig. 2 ). As in the first case study ( Section 3.1.1 ), the op-

imal experimental designs significantly outperform the conven- 

ional design in both process simulation and parameter accuracy 

 ζ con 
c = 0 . 24 and ζ con 

D 
= 0 . 55 , Table 2 ) emphasising the benefits of

ED. In particular, the c-optimal experimental design is predicted 

o reduce experimental effort by 75 % compared to the conven- 

ional design for the same process simulation accuracy. Therefore, 

anually distributing the experimental effort across a large design 

pace is particularly inefficient for subsequent use of the property 

arameters in a process simulation. 
7 
.2. Countercurrent rate-based extraction column with HTU-NTU 

izing 

As the third case study, we again consider the extraction of 

cetone from aqueous solution at 25 ◦C using toluene as a sol- 

ent based on the Ph.D. thesis by Wolff [48] . However, in con- 

rast to Case Study 1 ( Section 3.1.1 ), we use a countercurrent rate- 

ased extraction model with HTU-NTU sizing instead of a pinch- 

ased process model. The countercurrent extraction column as- 

umes mass transfer of the solute only, following two-film the- 

ry with a constant mass transfer coefficient and thermodynamic 

quilibrium at the interface. In contrast to the pinch-based process 

odels, we include sizing using the HTU-NTU method [41,42] and 

osting [49] (see SI for detailed equations). Therefore, the final 

odel result is the total annualised cost (TAC), which should be 

etermined as accurately as possible using c-OED. 

As a consequence, the model needs both isothermal NRTL- τ - 

nd diffusion parameters as property data. Therefore, we extend 

he OED to the selection of experiments for several thermodynamic 

roperties. The optimal experimental design not only yields which 

LE and diffusion experiments to perform but also balances the 

xperimental effort between LLE and diffusion experiments. Thus, 

he design vector of experiments ξ includes the scalar measure α
f LLE-experiments and additionally the effort on experiments for 

he diffusion coefficients of acetone in water D W 

and acetone in 

oluene D T . 

The diffusion experiments are assumed to be performed in a 

losed diffusion cell filled with equal volumes of two substances. 

he diffusion coefficients are derived from concentration measure- 

ents using Fick’s second law. Here, we assume measurements at 

ne position δ in the closed cell and at one dimensionless mea- 

urement time given by the Fourier number F o [10] . Therefore, the 

ED methodology determines the optimal Fourier number F o ∗ and 

he optimal measurement position δ∗. For the calculations, a stan- 

ard deviation of σw 

= 0 . 5% is assumed in measuring the phase 

ompositions in the LLE experiments and the concentrations in the 

iffusion experiments. 

For the LLE experiments, c-optimal design selects the same 

hree measurements with the same relative distribution of ex- 

erimental effort among the LLE experiments as the OED for 

he pinch-based process model for extraction in Section 3.1.1 (cf. 

ig. 1 ). Therefore, the dominating interactions for describing the 
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Fig. 3. Experimental designs for LLE and diffusion experiments for the extraction model using the HTU-NTU approach. 
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Table 3 

c- and D-efficiencies ζc and ζD of the c-optimal ξ
∗
c , D-optimal ξ

∗
D and equidistantly 

distributed conventional ξcon experimental designs estimation of isothermal NRTL- 

τ -and diffusion parameters and use in the countercurrent rate-based extraction 

process model. 

Design ξ c-efficiency ζc D-efficiency ζD 

c-optimal ξ
∗
c 1 0.39 

D-optimal ξ
∗
D 0.46 1 

conventional ξcon 0.11 0.62 
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d
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inimum solvent demand using the pinch-based process model 

re also most important for the countercurrent rate-based extrac- 

ion model. The selection of the same experimental settings is rea- 

onable since both process models use the same thermodynamic 

odel describing the liquid-liquid equilibrium as a basis for the 

olvent demand and cost calculations. Therefore, a precise descrip- 

ion of the extraction process is a prerequisite for accurate cost 

alculation. Naturally, the D-optimal design equals the D-optimal 

esign in Section 3.1.1 if focusing only on the LLE experiments 

ince the same thermodynamic model describing the experiments 

s considered. 

The diffusion experiments have the same optimal design using 

ither c- or D-OED: The most accurate estimation of diffusion co- 

fficients is achieved at a Fourier number F o ∗ = 0 . 1 and the mea-

urement position δ∗ = 0 , i.e. at the wall of the closed diffusion 

ell. Moreover, the experimental effort is equally distributed be- 

ween the diffusion coefficients of acetone in water D W 

and ace- 

one in toluene D T for both designs (cf. Fig. 3 ). 

However, the designs differ strongly in the distribution of ex- 

erimental effort between LLE and diffusion experiments: The c- 

ptimal design focuses 96 % of the total experimental effort on 

LE experiments and only 4 % on the diffusion experiments. There- 

ore, the property parameters describing the phase behaviour are 

ore important for accurate process simulation and costing than 

he parameters describing the diffusion. In contrast, the D-optimal 

esign places 25 % of the experimental effort on diffusion exper- 

ments and yields a c-efficiency ζ D 
c = 0 . 46 ( Table 3 ). Compared to

-optimal design in Case Study 1, the c-efficiency of the D-optimal 

esign improves since the D-optimal design selects the same op- 

imal diffusion experiments as the c-optimal design. The process 

imulation accuracy benefits more from performing the optimal 

iffusion experiments than from LLE experiments that are sub- 

ptimal for the process model accuracy. Still, the D-optimal de- 

ign doubles the experimental effort compared to the c-optimal 

esign. 

In terms of parameter accuracy, the limited experimental effort 

n diffusion experiments in the c-optimal design results in low ex- 
8 
ected accuracy of the diffusion coefficient estimation. As a result, 

he D-efficiency of the c-optimal design is only ζ c 
D 

= 0 . 39 . 

For the conventional experimental design, we manually allo- 

ate 60 % of the experimental effort on three equally weighted 

nd distributed LLE experiments as in Section 3.1.1 . The remain- 

ng 40 % of the experimental effort is equally distributed between 

he two diffusion experiments. We assume that the optimal set- 

ings with F o ∗ = 0 . 1 and δ∗ = 0 are also selected for each diffusion

xperiment in the conventional design as these settings have been 

isclosed in our previous work [10] . As a result, the conventional 

esign yields c- and D-efficiencies of ζ con 
c = 0 . 11 and ζ con 

D 
= 0 . 62 .

imilarly to Case Study 1, the conventional design has a substan- 

ially lower c-efficiency than the D-optimal design but a com- 

arable D-efficiency to the c-optimal design. Both the c- and D- 

fficiencies of the conventional design increase by 10 % compared 

o Case Study 1. Similar to the D-optimal design, the conventional 

esign benefits from the optimal diffusion experiments, which in- 

reases both the overall accuracy of parameter estimation and pro- 

ess simulation results. 

. Discussion: uncertainties resulting from the experimental 

esigns 

In this section, we challenge the predictions from OED theory 

y Monte-Carlo analysis for the pinch-based process models of ex- 

raction and extraction-distillation since these two case studies ex- 



L. Fleitmann, J. Pyschik, L. Wolff et al. Fluid Phase Equilibria 557 (2022) 113420 

Fig. 4. Procedure for determining the uncertainties of the process simulation results for each experimental design. 

h

p

t

p

e

m

p

u

g

C

c

t

m

f

u

u

(

 

4

t

i

1

t

o

p

r  

s

a

o

(

t

c

o

i

t

r

o

f

c

c

y

c

t

t

s

c

b

r

4

s

o

m

c

r

ibit the minimum and maximum difference in c-efficiencies re- 

orted in this paper. In c-OED theory, the standard deviation of 

he process simulation result is predicted assuming linear variance 

ropagation. However, process models are usually highly nonlin- 

ar. Therefore, assuming linear variance propagation from experi- 

ents through parameter estimation and process model only ap- 

roximates the actual variance propagation. Here, we compare the 

ncertainty from linear variance propagation in c-OED with propa- 

ation from uncertain experimental measurements using a Monte- 

arlo approach. For this purpose, we simulate LLE experiments by 

alculating phase compositions using the initial property parame- 

ers (see SI) and adding normally distributed noise to account for 

easurement errors. Afterwards, we estimate property parameters 

rom the simulated experiments and run the process simulation 

sing the estimated parameters to obtain the actual process model 

ncertainty. In detail, we apply the following five-step procedure 

 Fig. 4 ): 

1. Design optimal experiments : First, we calculate exact c- and D- 

optimal designs for a predefined number of experiments using 

a non-sequential algorithm [37] . Since the resulting exact de- 

signs depend on the initialisation of the algorithm, we run the 

algorithm repeatedly from random starting points to aim for 

a globally optimal solution. We also create a conventional de- 

sign, which equidistantly distributes the same number of ex- 

periments across the design space. 

2. Simulate experiments : From the initial property parameters and 

the thermodynamic model of the LLE experiments, we calcu- 

late the phase compositions that result from the experimental 

designs of Step 1. For this purpose, we assume that the ini- 

tial property parameters lead to the true phase compositions. 

Subsequently, we add measurement errors to the true phase 

compositions by sampling from a Gauss distribution with mean 

zero and a standard deviation corresponding to typical uncer- 

tainty for phase compositions in LLE measurements published 

in the literature. The typical standard deviation for measuring 

molar fractions σw 

ranges between 0.001 [50,51] and 0.005 

[45,46,52] , depending on the measurement method. In this 

work, we choose a standard deviation σw 

= 0 . 005 , as higher 

uncertainties are more challenging for the experimental design 

methodology because of the assumption of locally optimal de- 

signs. For comparison, we also performed Monte Carlo analyses 

for σw 

= 0 . 001 and σw 

= 0 . 01 , which can be found in the Sup-

porting Information. 

3. Estimate property parameters : From the simulated experiments, 

we estimate the property parameters by fitting the thermo- 

dynamic model of the LLE experiments. For this purpose, we 

use the MATLAB solver lsqcurvefit [53] considering 10 starting 

points for each fit to aim for a globally optimal solution. The di- 

rect use of global optimization methods as proposed by Mitsos 

et al. [54] would be a promising extension for future work. 

4. Calculate process simulation : We use the estimated property pa- 

rameters as input for the process simulation to obtain the ac- 

tual propagation of the estimated property parameters on the 

process simulation result. 
9 
5. Calculate uncertainty of process simulation : We repeat steps 2-4 

until 10 0 0 process simulation results are obtained for each ex- 

perimental design. From the 10 0 0 simulation results, we calcu- 

late the root mean square error (RMSE) between the simulation 

results of the estimated parameters from Monte Carlo analysis 

and the simulation result of initial parameters for each design. 

The RMSE of the Monte Carlo samples is compared to the ex- 

pected uncertainty from linear error propagation given by the 

standard deviation of OED theory. Both the RMSE and the stan- 

dard deviation are normalized by the actual value of the pro- 

cess simulation result to allow for relative comparisons. 

.1. Accuracy of the extraction process simulation 

We investigate the accuracy of the extraction process simula- 

ion depending on the experimental design by estimating the six 

sothermal NRTL- τ -Parameters of the ternary system for 5, 7, 10, 

5 and 20 LLE experiments as an example. We measure the uncer- 

ainty of the process simulation by computing the relative RMSE 

f the minimum solvent demand resulting from the pinch-based 

rocess model. Generally, the uncertainty of the process simulation 

esults is low, with a relative RMSE of 2–6 % ( Fig. 5 ). Therefore, a

mall number of experiments, e.g. 5 to 10, is already sufficient for 

n accurate description of the extraction process. 

The predictions from linear variance propagation using the c- 

ptimal objective function (hatched bars) and Monte Carlo analysis 

full bars) agree well for each design. The c-optimal objective func- 

ion successfully predicts qualitatively and quantitatively the un- 

ertainties of the simulation results: For the investigated numbers 

f experiments, the c-optimal design yields the lowest uncertainty 

n the Monte Carlo analysis as predicted, followed by the conven- 

ional and the D-optimal design. For each experimental design, the 

elative RMSE decreases monotonically with an increasing number 

f experiments, as expected from OED theory (cf. Eq. (1) ). Thus, 

or the simulation of the extraction process, Monte Carlo analysis 

onfirms the benefits promised by c-OED theory on simulation ac- 

uracy. 

Notably, the exact conventional designs with 5–20 experiments 

ield c-efficiencies between 0.43 and 0.46 and thus, exceed the 

-efficiencies of the continuous conventional designs with only 

hree distinct experimental settings (cf. Section 3.1.1 ). Therefore, 

he exact conventional designs outperform the exact D-optimal de- 

igns in simulation accuracy for this example. The differences in 

-efficiency compared to Section 3.1.1 result from the differences 

etween continuous and exact conventional designs and are cor- 

ectly reflected by the c-optimal objective function. 

.2. Accuracy of the extraction-distillation process simulation 

For the hybrid extraction-distillation process, we estimate the 

ix isothermal and six temperature-dependent NRTL- τ -parameters 

f the ternary system by performing 20, 25, 30, 40 or 50 experi- 

ents. We choose more experiments than for the extraction pro- 

ess to capture the temperature dependence with additional pa- 

ameters. The uncertainty of the process model is measured by the 
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Fig. 5. Uncertainties of the solvent demand of the extraction process for c- and D-optimal and conventional experimental designs. The full bars are the relative RMSE from 

the Monte Carlo sampling; the hatched bars are the expected relative standard deviation from OED theory. 

Fig. 6. Uncertainties of the energy demand of the extraction-distillation process for c- and D-optimal and conventional experimental designs. The full bars are the relative 

RMSE from the Monte Carlo sampling; the hatched bars are the expected relative standard deviation from OED theory. 
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elative RMSE of the minimum reboiler energy demand resulting 

rom the pinch-based process models. 

The relative RMSE of the simulation result range between 10–

7 % for the Monte Carlo analysis (full bars, Fig. 6 ) and are thus

bout one order of magnitude higher for the extraction-distillation 

ith temperature-dependent NRTL-parameters compared to the 

xtraction with isothermal NRTL-parameter. Qualitatively, the re- 

ults from the Monte Carlo analysis agree with the ranking ob- 

ained from OED theory: The c-optimal design provides the low- 

st uncertainty in process simulation results, followed by the D- 

ptimal and the conventional design. However, the results from the 

onte Carlo analysis deviate quantitatively from OED theory: For 

he investigated c-optimal designs, the OED theory underestimates 

he actual uncertainty of process simulation results by up to 38 % 

f the predicted uncertainty. In contrast, for the investigated con- 

entional designs, the OED theory overestimates the actual uncer- 

ainty of the process simulation results by up to 69 % of the actual 

ncertainty. The predictions for the D-optimal designs match well 

ith the Monte Carlo analysis for 20 and 25 experiments. For 30, 

0 and 50 experiments, however, the predictions for the D-optimal 
10 
esigns are increasingly overestimated by up to 25 % of the pre- 

icted uncertainty. The results indicate that the assumption of lin- 

ar error propagation is limited. The improvements predicted by 

inear variance propagation for c-OED cannot always be achieved. 

owever, c-OED still proves to provide the most accurate simula- 

ion results. 

In contrast to the c-optimal design, the relative RMSE of the 

-optimal design from the Monte Carlo sampling is not always 

nderestimated by OED theory. For fewer experiments, i.e. 20 ex- 

eriments, the D-optimal design yields a lower uncertainty in the 

onte Carlo analysis than predicted by OED theory. Therefore, 

he accuracy improvement of the c-optimal design decreases com- 

ared to the D-optimal design and eventually disappears for the 

xtraction-distillation process if only a minimum number of exper- 

ments is performed (cf. analysis in the SI). Thus, for a small num- 

er of experiments, an improvement in simulation accuracy cannot 

e guaranteed by c-OED. 

For these experiments, the accuracy increase in the process 

imulation through c-OED is counterbalanced by the impact of in- 

ccurate property parameters. The property parameter accuracy of 
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Fig. 7. Pareto frontier between c- and D-efficiency for parameter estimation of the 

extraction-distillation process. The orange circle marks the trade-off solution with 

minimum distance from the utopia point ( ζ uto 
D = ζ uto 

c = 1 ). 
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-OED is lower since overall parameter precision is not the goal of 

-OED. Thus, the parameters from c-optimal experiments are more 

rone to measurement uncertainties and more strongly affected by 

naccurate measurements for a small number of experiments. 

However, if the number of experiments is increased beyond 

he minimal number, c-optimal design outperforms the D-optimal 

nd conventional designs. The c-optimal design monotonically de- 

reases in simulation uncertainty, which is not guaranteed for the 

-optimal and conventional design. For higher uncertainties in 

ole fraction measurements, e.g. σw 

= 0 . 01 , the same qualitative 

rend can be observed (see analysis in the SI). 

In conclusion, the property parameters should be tailored for 

se in a process simulation but the overall parameter accuracy 

annot always be ignored to obtain accurate and robust simulation 

esults. Since the parameters estimated from c-OED are tailored to 

 specific process, these parameters are not optimal for every pur- 

ose. If the parameters are not only used for process simulation 

ut also for, e.g. gaining thermodynamic insights, the OED objec- 

ive needs to be adapted. 

A single OED optimality criterion rarely leads to optimal pa- 

ameters for all purposes since the individual OED objectives con- 

ict with each other. For the extraction-distillation process, e.g. c- 

nd D-efficiency form a well-defined Pareto frontier ( Fig. 7 ). Nei- 

her c-efficiency nor D-efficiency of an optimal multi-objective de- 

ign can be improved without deteriorating the efficiency of the 

ther objective. Therefore, a multi-objective design needs a care- 

ully balanced optimality criterion. However, the Pareto frontier 

hows good trade-off solutions: c-efficiency for accurate process 

imulations can be substantially increased with small losses to the 

-efficiency representing parameter accuracy. E.g. a trade-off point 

inimizing the distance to the utopia point ( ζ uto 
D 

= ζ uto 
c = 1 ) re- 

ains a D-efficiency of ζ to 
D 

= 0 . 89 while increasing c-efficiency from 

D 
c = 0 . 6 to ζ to 

c = 0 . 9 . The study of such trade-offs could be a valu-

ble use of the introduced c-efficiency concept. 

In future work, the parameter precision of the c-optimal design 

an further be considered towards more robust designs for param- 

ter estimation, e.g. by compound design [24] such as combined 

- and D-optimal design [55] , or by introducing a minimum D- 

fficiency as a constraint within the optimisation [26,27] . Meth- 

ds from the area of robust experimental design can also be ex- 

lored to strengthen the c-optimal design for reliable improvement 

f simulation accuracy, e.g. by considering the most inaccurate pro- 

ess simulation as objective for OED [56] . 
11 
. Conclusion 

In this paper, we introduced c-optimal experimental design (c- 

ED) as a method of optimal experimental design for chemical en- 

ineering problems. c-OED minimises the uncertainty of the pro- 

ess simulation result instead of parameter precision as the design 

bjective. Thus, c-OED considers the application of estimated prop- 

rty parameters in a process simulation already during the design 

f experiments. To estimate the uncertainty of the process simula- 

ion results, c-OED uses linear variance propagation from uncertain 

roperty parameters through the process model. 

We demonstrate c-OED for estimating isothermal and 

emperature-dependent NRTL-parameters from liquid-liquid equi- 

ibrium experiments for an extraction column and an extraction- 

istillation process modelled by pinch-based process models. The 

LE experiments are designed to minimise the uncertainty of the 

ain thermodynamic performance measures: the minimum sol- 

ent demand of the extraction and the minimum energy demand 

f the extraction-distillation process. Moreover, for a rate-based 

xtraction column sized by the HTU-NTU model, we simultane- 

usly design liquid-liquid equilibrium and closed-cell diffusion 

xperiments that minimise the uncertainty of the total annualised 

ost of the extraction column. 

The application of c-OED for chemical processes shows that 

onsidering the sensitivity of the process within OED highly im- 

acts the selection of experiments for property parameter estima- 

ion. c-OED yields non-trivial experimental designs that outper- 

orm state-of-the-art OED in accuracy of process simulation results. 

he c-optimal experiments focus on the accurate estimation of pa- 

ameters most relevant for accurate process simulations. The pri- 

ritisation of experiments for specific parameters is particularly ev- 

dent in the simultaneous design of LLE and diffusion experiments: 

he major experimental effort of the c-optimal design for the rate- 

ased extraction column is spent on LLE instead of diffusion exper- 

ments. 

Compared to state-of-the-art OED, c-OED reduces the experi- 

ental effort by up to 64 % for the same accuracy in our case 

tudies. Conventionally designed experiments without using OED 

ould increase the experimental effort compared to c-OED by up 

o a factor of 10, highlighting the need for (c)-OED. 

The predictions on accuracy from c-OED theory are examined 

y Monte Carlo Analysis to challenge the linear approximation of 

ariance propagation. Generally, the OED predictions agree well 

ith the results from Monte Carlo Analysis, and thus, the assump- 

ion of linear variance propagation is a good approximation of the 

ctual variance propagation. In our case studies, process simulation 

ccuracy significantly increases through c-OED. The uncertainty of 

rocess model results decreases by 30–40 % for an extraction pro- 

ess and by 5–25 % for an extraction-distillation process compared 

o conventional experimental designs and state-of-the-art OED that 

oes not consider the process. Therefore, c-OED increases accuracy 

ven for highly nonlinear process models and is thus successfully 

hown to tailor experiments for thermodynamic properties to pro- 

ess simulations. 

For future work, the focus should be directed to strengthening 

he robustness of the c-optimal design, e.g. by compound design 

24] . The predictions from c-OED theory can fail due to overall in- 

ccurate property parameters if too few experiments are consid- 

red. The c-optimal experimental designs increase the accuracy of 

rocess simulations at the expense of other OED efficiencies, e.g. 

-efficiency for parameter accuracy. However, efficient trade-off

olutions can be identified balancing process simulation and pa- 

ameter accuracy. Balanced compound or multi-objective designs 

llow to identify such trade-off solutions. 

Considering multiple operating points of the process simulation 

nstead of only one operating point, e.g. by L- or D k -optimality 
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4,27] , could extend the accuracy increase by c-OED for a broader 

imulation range of the process model. For an extension from pro- 

ess simulation to process optimisation and design, the sensitiv- 

ties of the optimal process variables to the uncertain property 

arameters need to be considered. For example, the first-order 

erivatives of optimised process simulation outputs with respect 

o property parameters could be integrated into c-OED. Ultimately, 

his approach would formally transform the idea of c-OED into 

he method of weighted A-optimality presented by [21] . Moreover, 

n practice, the initial parameter guesses rarely match the opti- 

al parameters. Thus, an iterative procedure is usually required 

57] that involves not only OED but also parameter fitting, vali- 

ation and consistency tests. Therefore, future work should inves- 

igate the influence of initial property parameters on the benefit 

rom c-optimal design. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Lorenz Fleitmann: Conceptualization, Methodology, Validation, 

oftware, Investigation, Data curation, Visualization, Writing – orig- 

nal draft, Writing – review & editing. Jan Pyschik: Methodology, 

oftware, Investigation, Visualization, Writing – review & editing. 

udger Wolff: Conceptualization, Methodology, Software, Writing 

review & editing. Johannes Schilling: Methodology, Validation, 

nvestigation, Writing – review & editing. André Bardow: Concep- 

ualization, Methodology, Writing – review & editing, Supervision, 

unding acquisition. 

cknowledgments 

The authors gratefully acknowledge funding by the Deutsche 

orschungsgemeinschaft (DFG, German Research Foundation) un- 

er Germany’s Excellence Strategy and Cluster of Excellence 2186 

The Fuel Science Center” ID: 390919832. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.fluid.2022.113420 . 

eferences 

[1] A. Mitsos, N. Asprion, C.A. Floudas, M. Bortz, M. Baldea, D. Bonvin, A. Caspari, 
P. Schäfer, Challenges in process optimization for new feedstocks and energy 

sources, Comput. Chem. Eng. 113 (2018) 209–221, doi: 10.1016/j.compchemeng. 

2018.03.013 . 
[2] P.M. Mathias, Effect of VLE uncertainties on the design of separation sequences 

by distillation – Study of the benzene–chloroform–acetone system, Fluid Phase 
Equilib. 408 (2016) 265–272, doi: 10.1016/j.fluid.2015.09.004 . 

[3] G.M. Kontogeorgis, R. Dohrn, I.G. Economou, J.-C. de Hemptinne, A. ten Kate, 
S. Kuitunen, M. Mooijer, L.F. Žilnik, V. Vesovic, Industrial requirements for 

thermodynamic and transport properties: 2020, Ind. Eng. Chem. Res. 60 (13) 

(2021) 4987–5013, doi: 10.1021/acs.iecr.0c05356 . 
[4] A .C. Atkinson, A .N. Donev, R. Tobias, Optimum experimental designs, with SAS, 

Oxford statistical science series, vol. 34, Oxford University Press, Oxford and 
New York, 2006. http://search.ebscohost.com/login.aspx?direct=true&scope= 

site&db=nlebk&db=nlabk&AN=201173 
[5] G. Franceschini, S. Macchietto, Model-based design of experiments for param- 

eter precision: state of the art, Chem. Eng. Sci. 63 (19) (2008) 4 846–4 872,
doi: 10.1016/j.ces.2007.11.034 . 

[6] E. Forte, E. von Harbou, J. Burger, N. Asprion, M. Bortz, Optimal design of labo-

ratory and pilot-plant experiments using multiobjective optimization, Chemie 
Ingenieur Technik 89 (5) (2017) 645–654, doi: 10.10 02/cite.20160 0104 . 

[7] O. Walz, H. Djelassi, A. Caspari, A. Mitsos, Bounded-error optimal experimental 
design via global solution of constrained min–max program, Comput. Chem. 

Eng. 111 (2018) 92–101, doi: 10.1016/j.compchemeng.2017.12.016 . 
12 
[8] D. Dechambre, L. Wolff, C. Pauls, A. Bardow, Optimal experimental design for 
the characterization of liquid–liquid equilibria, Ind. Eng. Chem. Res. 53 (50) 

(2014) 19620–19627, doi: 10.1021/ie5035573 . 
[9] B.P. Duarte, A.C. Atkinson, J.F. Granjo, N.M. Oliveira, A model-based framework 

assisting the design of vapor-liquid equilibrium experimental plans, Comput. 
Chem. Eng. 145 (2021) 107168, doi: 10.1016/j.compchemeng.2020.107168 . 

[10] L. Wolff, H.-J. Koß, A. Bardow, The optimal diffusion experiment, Chem. Eng. 
Sci. 152 (2016) 392–402, doi: 10.1016/j.ces.2016.06.012 . 

[11] L. Pronzato, E. Walter, Experiment design for bounded-error models, Math. 

Comput. Simul. 32 (5–6) (1990) 571–584, doi: 10.1016/0378-4754(90)90013-9 . 
[12] Q. Dong, R.D. Chirico, X. Yan, X. Hong, M. Frenkel, Uncertainty reporting for 

experimental thermodynamic properties † , J. Chem. Eng. Data 50 (2) (2005) 
546–550, doi: 10.1021/je049673d . 

[13] M. Gevers, L. Ljung, Optimal experiment designs with respect to the in- 
tended model application, Automatica 22 (5) (1986) 543–554, doi: 10.1016/ 

0 0 05-1098(86)90 064-6 . 

[14] N. Asprion, R. Böttcher, J. Mairhofer, M. Yliruka, J. Höller, J. Schwientek, 
C. Vanaret, M. Bortz, Implementation and Application of Model-Based De- 

sign of Experiments in a Flowsheet Simulator, J. Chem. Eng. Data (2019), 
doi: 10.1021/acs.jced.9b00494 . 

[15] O. Walz, H. Djelassi, A. Mitsos, Optimal experimental design for optimal pro- 
cess design: a trilevel optimization formulation, AIChE J. 110 (2019) 971, doi: 10. 

1002/aic.16788 . 

[16] S. Recker, N. Kerimoglu, A. Harwardt, O. Tkacheva, W. Marquardt, On the 
integration of model identification and process optimization, in: 23rd Eu- 

ropean Symposium on Computer Aided Process Engineering, in: Computer 
Aided Chemical Engineering, vol. 32, Elsevier, 2013, pp. 1021–1026, doi: 10. 

1016/B978- 0- 4 4 4- 63234- 0.50171- 8 . 
[17] S. Lucia, R. Paulen, Robust nonlinear model predictive control with reduction 

of uncertainty via robust optimal experiment design, IFAC Proc. Vol. 47 (3) 

(2014) 1904–1909, doi: 10.3182/20140824- 6- ZA- 1003.02332 . 
[18] S. Kaiser, S. Engell, Integrating superstructure optimization under uncertainty 

and optimal experimental design in early stage process development, in: 30th 
European Symposium on Computer Aided Process Engineering, in: Computer 

Aided Chemical Engineering, vol. 48, Elsevier, 2020, pp. 799–804, doi: 10.1016/ 
B978- 0- 12- 823377- 1.50134- 8 . 

[19] S. Kaiser, T. Menzel, S. Engell, Focusing experiments in the early phase pro- 

cess design by process optimization and global sensitivity analysis, in: 31st 
European Symposium on Computer Aided Process Engineering, in: Computer 

Aided Chemical Engineering, vol. 50, Elsevier, 2021, pp. 899–904, doi: 10.1016/ 
B978- 0- 323- 88506- 5.50139- X . 

20] L. Fleitmann, J. Pyschik, L. Wolff, A. Bardow, Optimal physical property 
data for process simulations by optimal experimental design, in: 31st Eu- 

ropean Symposium on Computer Aided Process Engineering, in: Computer 

Aided Chemical Engineering, vol. 50, Elsevier, 2021, pp. 851–857, doi: 10.1016/ 
B978- 0- 323- 88506- 5.50133- 9 . 

[21] B. Houska, D. Telen, F. Logist, M. Diehl, J.F. van Impe, An economic objective for
the optimal experiment design of nonlinear dynamic processes, Automatica 51 

(2015) 98–103, doi: 10.1016/j.automatica.2014.10.100 . 
22] D. Telen, B. Houska, F. Logist, J. van Impe, Multi-purpose economic optimal ex- 

periment design applied to model based optimal control, Comput. Chem. Eng. 
94 (2016) 212–220, doi: 10.1016/j.compchemeng.2016.07.004 . 

23] D. Telen, B. Houska, M. Vallerio, F. Logist, J. van Impe, A study of integrated

experiment design for NMPC applied to the droop model, Chem. Eng. Sci. 160 
(2017) 370–383, doi: 10.1016/j.ces.2016.10.046 . 

24] V.V. Fedorov , S.L. Leonov , Optimal Design for Nonlinear Response Models, 
Chapman & Hall, first ed., Taylor & Francis, Boca Raton, 2014 . 

25] T. Holland-Letz, On the combination of c- and D-optimal designs: General ap- 
proaches and applications in dose-response studies, Biometrics 73 (1) (2017) 

206–213, doi: 10.1111/biom.12545 . 

26] T. Holland-Letz, N. Gunkel, E. Amtmann, A. Kopp-Schneider, Parametric mod- 
eling and optimal experimental designs for estimating isobolograms for drug 

interactions in toxicology, J. Biopharma. Stat. 28 (4) (2018) 763–777, doi: 10. 
1080/10543406.2017.1397005 . 

27] T. Holland-Letz, A. Kopp-Schneider, Optimal experimental designs for estimat- 
ing the drug combination index in toxicology, Comput. Stat. Data Anal. 117 

(2018) 182–193, doi: 10.1016/j.csda.2017.08.006 . 

28] C. Han, K. Chaloner, D- and c-optimal designs for exponential regression mod- 
els used in viral dynamics and other applications, J. Stat. Plann. Inference 115 

(2) (2003) 585–601, doi: 10.1016/S0378-3758(02)00175-1 . 
29] Y. Bard , Nonlinear Parameter Estimation, Acad. Press, New York, 1974 . 

30] H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess func- 
tions for liquid mixtures, AIChE J. 14 (1) (1968) 135–144, doi: 10.1002/aic. 

690140124 . 

[31] A. Bazyleva, J. Abildskov, A. Anderko, O. Baudouin, Y. Chernyak, J.-C. de 
Hemptinne, V. Diky, R. Dohrn, J.E. Richard, J. Jacquemin, J.-N. Jaubert, 

K.G. Joback, U.R. Kattner, G. Kontogeorgis, H. Loria, P.M. Mathias, J.P. O’Connell, 
W. Schröer, G.J. Smith, A. Soto, S. Wang, R.D. Weir, Good reporting prac- 

tice for thermophysical and thermochemical property measurements (IUPAC 
technical report), Pure Appl. Chem. Chimie pure et Appliquee 93 (2) (2021), 

doi: 10.1515/pac- 2020- 0403 . 

32] H.C. van Ness, Thermodynamics in the treatment of vapor/liquid equilibrium 

(VLE) data, Pure Appl. Chem. Chimie pure et Appliquee 67 (6) (1995) 859–872, 

doi: 10.1351/pac199567060859 . 
33] J. Gmehling, M. Kleiber, Vapor–liquid equilibrium and physical proper- 

ties for distillation, in: Distillation, Elsevier, 2014, pp. 45–95, doi: 10.1016/ 
B978- 0- 12- 386547- 2.0 0 0 02-8 . 

https://doi.org/10.1016/j.fluid.2022.113420
https://doi.org/10.1016/j.compchemeng.2018.03.013
https://doi.org/10.1016/j.fluid.2015.09.004
https://doi.org/10.1021/acs.iecr.0c05356
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=201173
https://doi.org/10.1016/j.ces.2007.11.034
https://doi.org/10.1002/cite.201600104
https://doi.org/10.1016/j.compchemeng.2017.12.016
https://doi.org/10.1021/ie5035573
https://doi.org/10.1016/j.compchemeng.2020.107168
https://doi.org/10.1016/j.ces.2016.06.012
https://doi.org/10.1016/0378-4754(90)90013-9
https://doi.org/10.1021/je049673d
https://doi.org/10.1016/0005-1098(86)90064-6
https://doi.org/10.1021/acs.jced.9b00494
https://doi.org/10.1002/aic.16788
https://doi.org/10.1016/B978-0-444-63234-0.50171-8
https://doi.org/10.3182/20140824-6-ZA-1003.02332
https://doi.org/10.1016/B978-0-12-823377-1.50134-8
https://doi.org/10.1016/B978-0-323-88506-5.50139-X
https://doi.org/10.1016/B978-0-323-88506-5.50133-9
https://doi.org/10.1016/j.automatica.2014.10.100
https://doi.org/10.1016/j.compchemeng.2016.07.004
https://doi.org/10.1016/j.ces.2016.10.046
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0024
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0024
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0024
https://doi.org/10.1111/biom.12545
https://doi.org/10.1080/10543406.2017.1397005
https://doi.org/10.1016/j.csda.2017.08.006
https://doi.org/10.1016/S0378-3758(02)00175-1
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0029
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0029
https://doi.org/10.1002/aic.690140124
https://doi.org/10.1515/pac-2020-0403
https://doi.org/10.1351/pac199567060859
https://doi.org/10.1016/B978-0-12-386547-2.00002-8


L. Fleitmann, J. Pyschik, L. Wolff et al. Fluid Phase Equilibria 557 (2022) 113420 

[

[

[

[

[

[

[

[

[

 

[

[

[

[

[

[

[

[

[

[

[

[

34] W. Squire, G. Trapp, Using complex variables to estimate derivatives of real 
functions, SIAM Rev. 40 (1) (1998) 110–112, doi: 10.1137/S003614459631241X . 

35] R. García-Ródenas, J.C. García-García, J. López-Fidalgo, J.Á. Martín-Baos, 
W.K. Wong, A comparison of general-purpose optimization algorithms for find- 

ing optimal approximate experimental designs, Comput. Stat. Data Anal. 144 
(2020) 106844, doi: 10.1016/j.csda.2019.106844 . 

36] Y. Yu, Monotonic convergence of a general algorithm for computing optimal 
designs, Ann. Stat. 38 (3) (2010) 1593–1606, doi: 10.1214/09-AOS761 . 

37] H.P. Wynn, Results in the Theory and construction of D-optimum experimental 

designs, J. R. Stat. Soc. Ser. B 34 (2) (1972) 133–147, doi: 10.1111/j.2517-6161. 
1972.tb00896.x . 

38] N.-K. Nguyen, A.J. Miller, A review of some exchange algorithms for construct- 
ing discrete D-optimal designs, Comput. Stat. Data Anal. 14 (4) (1992) 489–

498, doi: 10.1016/0167- 9473(92)90064- M . 
39] J. Bausa, R.v. Watzdorf, W. Marquardt, Shortcut methods for nonideal multi- 

component distillation: I. Simple columns, AIChE J. 44 (10) (1998) 2181–2198, 

doi: 10.1002/aic.690441008 . 
40] C. Redepenning, S. Recker, W. Marquardt, Pinch-based shortcut method for the 

conceptual design of isothermal extraction columns, AIChE J. 63 (4) (2017) 
1236–1245, doi: 10.1002/aic.15523 . 

[41] T.H. Chilton, A.P. Colburn, Distillation and absorption in packed columns a con- 
venient design and correlation method, Ind. Eng. Chem. 27 (3) (1935) 255–260, 

doi: 10.1021/ie50303a004 . 

42] Thermal Separation Processes: Chapter 01 - Basic Concepts, K. Sattler, 
H.J. Feindt (Eds.), Wiley-VCH Verlag GmbH, Weinheim, Germany, 1995, doi: 10. 

1002/9783527615476 . 
43] S. Enders, H. Kahl, J. Winkelmann, Surface tension of the ternary system water 

+ acetone + toluene, J. Chem. Eng. Data 52 (3) (2007) 1072–1079, doi: 10.1021/
je70 0 0182 . 

44] B. Kuzmanovi ́c, M.L. van Delden, N.J.M. Kuipers, A.B. de Haan, Fully automated 

workstation for liquid −liquid equilibrium measurements, J. Chem. Eng. Data 
48 (5) (2003) 1237–1244, doi: 10.1021/je0340452 . 

45] D. Dechambre, C. Pauls, L. Greiner, K. Leonhard, A. Bardow, Towards automated 
characterisation of liquid–liquid equilibria, Fluid Phase Equilib. 362 (2014) 

328–334, doi: 10.1016/j.fluid.2013.10.048 . 
13 
46] J. Thien, L. Reinpold, T. Brands, H.-J. Koß, A. Bardow, Automated physical prop- 
erty measurements from calibration to data analysis: microfluidic platform for 

liquid–liquid equilibrium using raman microspectroscopy, J. Chem. Eng. Data 
65 (2) (2020) 319–327, doi: 10.1021/acs.jced.9b00636 . 

[47] E. Forte, A. Kulkarni, J. Burger, M. Bortz, K.-H. Küfer, H. Hasse, Multi-criteria 
optimization for parametrizing excess Gibbs energy models, Fluid Phase Equi- 

lib. 522 (2020) 112676, doi: 10.1016/j.fluid.2020.112676 . 
48] L.W.M. Wolff, From model-based experimental design and analysis of diffusion 

and liquid-liquid equilibria to process applications, RWTH Aachen University, 

Aachen, Germany, 2021 Ph.D. thesis . 
49] L.T. Biegler , I.E. Grossmann , A.W. Westerberg , Systematic methods of chemical 

process design, Prentice-Hall international series in the physical and chemical 
engineering sciences, Prentice-Hall, Upper Saddle River, NJ, 1997 . 

50] I. Nagata, Liquid-liquid equilibria for four ternary systems containing methanol 
and cyclohexane, Fluid Phase Equilib. 18 (1) (1984) 83–92, doi: 10.1016/ 

0378- 3812(84)80023- 0 . 

[51] I. Nagata, Liquid-liquid equilibria for ternary acetonitrile-ethanol-saturated hy- 
drocarbon and acetonitrile-1-propanol-saturated hydrocarbon mixtures, Ther- 

mochimica Acta 119 (2) (1987) 357–368, doi: 10.1016/0040- 6031(87)80272- 1 . 
52] J. Thien, C. Peters, T. Brands, H.-J. Koß, A. Bardow, Efficient determination of 

Liquid–Liquid equilibria using microfluidics and raman microspectroscopy, Ind. 
Eng. Chem. Res. 56 (46) (2017) 13905–13910, doi: 10.1021/acs.iecr.7b03230 . 

53] The MathWorks Inc., MATLAB: Optimization Toolbox (Release 2019a)., 2019. 

54] A. Mitsos, G.M. Bollas, P.I. Barton, Bilevel optimization formulation for parame- 
ter estimation in liquid–liquid phase equilibrium problems, Chem. Eng. Sci. 64 

(3) (2009) 548–559, doi: 10.1016/j.ces.2008.09.034 . 
55] A.C. Atkinson, B. Bogacka, Compound and other optimum designs for systems 

of nonlinear differential equations arising in chemical kinetics, Chemom. Intell. 
Lab. Syst. 61 (1–2) (2002) 17–33, doi: 10.1016/S0169-7439(01)00173-3 . 

56] C.R. Rojas, J.S. Welsh, G.C. Goodwin, A. Feuer, Robust optimal experiment de- 

sign for system identification, Automatica 43 (6) (2007) 993–1008, doi: 10. 
1016/j.automatica.2006.12.013 . 

57] A.R.G. Mukkula, M. Mateáš, M. Fikar, R. Paulen, Robust multi-stage model- 
based design of optimal experiments for nonlinear estimation, Comput. Chem. 

Eng. (2021) 107499, doi: 10.1016/j.compchemeng.2021.107499 . 

https://doi.org/10.1137/S003614459631241X
https://doi.org/10.1016/j.csda.2019.106844
https://doi.org/10.1214/09-AOS761
https://doi.org/10.1111/j.2517-6161.1972.tb00896.x
https://doi.org/10.1016/0167-9473(92)90064-M
https://doi.org/10.1002/aic.690441008
https://doi.org/10.1002/aic.15523
https://doi.org/10.1021/ie50303a004
https://doi.org/10.1002/9783527615476
https://doi.org/10.1021/je7000182
https://doi.org/10.1021/je0340452
https://doi.org/10.1016/j.fluid.2013.10.048
https://doi.org/10.1021/acs.jced.9b00636
https://doi.org/10.1016/j.fluid.2020.112676
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0048
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0048
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0049
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0049
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0049
http://refhub.elsevier.com/S0378-3812(22)00045-0/sbref0049
https://doi.org/10.1016/0378-3812(84)80023-0
https://doi.org/10.1016/0040-6031(87)80272-1
https://doi.org/10.1021/acs.iecr.7b03230
https://doi.org/10.1016/j.ces.2008.09.034
https://doi.org/10.1016/S0169-7439(01)00173-3
https://doi.org/10.1016/j.automatica.2006.12.013
https://doi.org/10.1016/j.compchemeng.2021.107499

	Optimal experimental design of physical property measurements for optimal chemical process simulations
	1 Introduction
	2 Background and method: optimal experimental design using the c-optimality criterion
	2.1 Derivation of the c-optimal objective function
	2.2 Solving OED problems
	2.3 Comparison of experimental designs

	3 Case studies
	3.1 Pinch-based process models for extraction and distillation
	3.1.1 OED for estimation of isothermal NRTL--parameters for an extraction column
	3.1.2 OED for estimation of temperature-dependent NRTL--parameter from LLE experiments for a hybrid extraction-distillation process

	3.2 Countercurrent rate-based extraction column with HTU-NTU sizing

	4 Discussion: uncertainties resulting from the experimental designs
	4.1 Accuracy of the extraction process simulation
	4.2 Accuracy of the extraction-distillation process simulation

	5 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References


