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Chemical process simulations depend on physical properties, which are usually available through prop-
erty models with parameters estimated from experiments. The required experimental effort can be re-
duced using the method of Optimal Experimental Design (OED). OED reduces the number of experiments
by minimising the expected uncertainty of the estimated parameters. In chemical engineering, however,
the main purpose of an experiment is usually not to determine property parameters with minimum un-
certainty but to simulate processes accurately. Therefore, this paper presents the OED of physical prop-
erty measurements resulting in the most accurate process simulations: c-optimal experimental design
(c-OED). c-OED aims to minimise the uncertainty of the process simulation results, which is estimated
by linear uncertainty propagation from uncertain property parameters through the process model. We
use c-OED to design liquid-liquid equilibrium and diffusion experiments minimising thermodynamic and
economic performance metrics of three solvent-based processes. In all three case studies, the c-optimal
design substantially reduces the experimental effort for the same simulation accuracy compared to state-
of-the-art OED that neglects the process. Our findings are confirmed by a Monte-Carlo simulation of the
designed experiments. Furthermore, we assess the limits of c-OED for highly nonlinear process models.
Thus, the work shows how c-OED can successfully reduce experimental effort required for accurate pro-
cess simulations by tailoring experimental designs to the process model.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

For the simulation and design of chemical processes, estima-
tion of physical properties is crucial [1]. In particular, thermody-
namic properties, e.g. describing phase behaviour, largely influence
chemical processes [2]. Therefore, accurate simulations in chemical
engineering require high-quality property data. Today, the basis for
accurate property parameter estimation is still mostly experimen-
tation [3]. The experimental data is then usually used to fit pa-
rameters in physical property models to allow for interpolation or
even extrapolation in the simulations. However, experiments con-
sume time and large amounts of materials causing high costs for
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estimating parameters in property models. Therefore, experimen-
tal effort should be minimised by selecting only experiments that
provide the most information and thus lead to the most accurate
process simulations.

Selecting optimal experiments is an important topic and has
led to establishing the theory of model-based optimal experi-
mental design (OED) [4,5]. OED identifies optimal experiments by
analysing the uncertainty propagation from experimental measures
to estimated property parameters through a predefined model of
the experiment. So far, OED has been applied for the estimation
of important thermodynamic properties in chemical engineering,
such as reaction kinetics [6,7], phase equilibria [8,9], diffusion co-
efficients [10] or adsorption isotherms [7].

Generally, two approaches for OED can be distinguished: (1)
statistical OED [5] and (2) bounded-error OED [11]. Statistical OED
minimises the parameter variances considering a statistical error
distribution [7]. In contrast, bounded-error OED minimises the fea-
sible parameter set consistent with the measurement uncertainty
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Nomenclature

o scalar measure describing the center of the tie lines

A matrix containing the sensitivities of the thermo-
dynamic model g with respect to the experimental
measurements w

B matrix containing the sensitivities of the thermody-
namic model g with respect to the parameters 6

c vector containing the sensitivities of the process
model h with respect to the parameters 6

F Fisher-Information-Matrix

g thermodynamic model describing the experiments

h process model result

K parameters of the process model

N number of distinct experimental settings

Nexp number of experiments

Qmin minimum reboiler energy demand calculated by
pinch-based distillation model

ow standard deviation of measurements

Smin minimum solvent demand calculated by pinch-
based extraction model

0 thermodynamic model parameters

0, & initial or predefined parameters of @ or &

Yo parameter variance-covariance matrix from previ-
ously performed experiments

Vw variance-covariance matrix of the experimental
measurements w

Vs variance-covariance matrix of the parameters &

v; normalised weight of experiment i

w experimental measurement results
design vector describing an experimental design

& optimal experimental design vector

&on conventional experimental design

&, &) ¢ and D-optimal experimental design, respectively

z; experimental settings for experiment i

Ce, &p  c- and D-efficiency, respectively

given by upper and lower bounds on the errors [7]. As a result,
bounded-error OED requires fewer assumptions on errors than sta-
tistical OED but instead needs to solve a challenging bilevel opti-
misation problem. For many experiments in chemical engineering
problems, the measurement uncertainty is known [12] and justi-
fies the use of statistical OED. Thus, in this work, we focus on the
more popular statistical OED.

In statistical OED, the objective function is usually a scalar
measure of the parameter variances representing parameter uncer-
tainty [5]. Several well-known objective functions have been devel-
oped to determine the experimental designs leading to the most
accurate parameters [5], e.g. minimising the average uncertainty of
all parameters (A-optimality); minimising the uncertainty of the
most uncertain parameter (E-optimality); or minimising a gener-
alised variance of the parameters (D-optimality).

However, in chemical engineering, the primary purpose of ex-
periments is rarely to gain knowledge of parameters themselves.
Instead, chemical engineers, e.g. seek to gain thermodynamic in-
sights, predict phase behaviours or simulate a process. Thus, the
experimental design needs to reflect the model application [13].
Recently, OED methods have focused on incorporating the purpose
of parameter estimation. [8] employed G-optimal experimental de-
sign that minimises the expected variance of the model predic-
tions of the experiments of uncertainties in property parameters.
In particular, [8] minimised the predicted variance of phase com-
positions calculated from a liquid-liquid equilibrium model instead
of the property parameters of the used activity coefficient model.
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Similarly, for process simulations, the impact of the property
parameters on the simulation results is usually more important
than the uncertainty of the property parameters. If the governing
phenomena of the chemical system are known and a thermody-
namic model capable to describe these phenomena is selected, the
purpose of experimentation is accuracy increase of the simulation
through (re-)parametrisation. However, an experimental design for
the most accurate property parameters does not ensure the low-
est uncertainty in process simulation. Thus, the property parameter
use in a process model needs to be considered within the optimal
experimental design.

For this purpose, [14] recently presented OED for experiments
in a plant or mini plant using a flowsheet simulator. In their work,
the optimal experimental design considers property parameter use
by employing the process model already for the parameter estima-
tion. The authors show that their method improves model discrim-
ination and parameter estimation. However, the method requires
expensive and time-consuming plant experiments instead of small
lab-scale experiments.

For lab-scale experiments and bounded-error OED, Walz and
coworkers accounted for property parameter use in process sim-
ulation and design [7,15]. The authors successfully show how to
reduce experimental effort without changing the reliability of the
process model results. However, their method requires solving a
challenging bi- or trilevel optimisation problem and is currently
limited to small process models.

For statistical OED and lab-scale experiments, a first approach
was published by Recker et al. [16]. The authors considered the
sensitivities of the process to the property parameters by heuris-
tically scaling the A-optimality criterion and successfully opti-
mised the experimental design to estimate reaction kinetics for a
reaction-separation process. A similar approach was proposed by
Lucia and Paulen [17] for robust nonlinear model predictive con-
trol. Using the sensitivities of the optimal robust economic objec-
tive value to parametric uncertainty, the authors scaled a modified
E-criterion. Kaiser and Engell [18] and Kaiser et al. [19] linked OED
for parameter estimation with superstructure optimisation of early
process design stages [18,19]. For this purpose, the authors perform
global sensitivity analysis of optimisation results towards the un-
certain parameters using heuristically scaled D-optimality [18] and
heuristically scaled A-optimality [19].

However, even though these heuristic approaches provide a
breakthrough by combining OED and process simulation, heuristic
designs likely differ from optimal designs with full consideration of
the process [20]. Instead, full consideration of process information
requires uncertainties of property parameters to propagate through
the process model, and the uncertainties of the process model re-
sults should be used as the OED objective.

In pioneering work, the van Impe group integrated experimen-
tal design and nonlinear model predictive control [21-23]. The au-
thors mathematically derived an economic process objective func-
tion for experimental design by weighted A-optimality. They de-
fined the OED objective as the minimisation of the expected opti-
mality gap of the parametric optimal control problem via second-
order derivatives of the Lagrange function [21]. The approach was
demonstrated successfully to tailor experimental designs for esti-
mating reaction rate constants to control problems of bioreactors.

Similarly, for the most accurate chemical process simulations,
the OED objective needs to be defined in terms of process un-
certainties to capture the property parameter use in the process
simulation. The idea of optimising the uncertainty of a simulation
output as the objective for OED can be formulated as the so-called
c-optimal experimental design (c-OED) [4]. In general, c-OED min-
imises a linear combination of model parameter variances as the
optimisation objective [4]. A linear combination of model param-
eters corresponds to the linear variance propagation of these pa-
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rameters through a model if the weights of the linear combina-
tion are the first-order derivatives of the model with respect to
the model parameters. Therefore, c-OED can reflect the property
parameter use in a chemical process simulation directly in the ob-
jective, e.g. the impact of NRTL-parameters on the total process en-
ergy demand.

Interestingly, c-optimality is mathematically a special case of
weighted A-optimality [24]. Thus, c-OED is connected to the mod-
ified A-optimal criterion from [21]. In contrast to [21], c-OED
weights parameter uncertainties by first-order derivatives instead
of scaling the OED problem by second-order derivatives of the La-
grange function of an optimisation problem. Therefore, c-OED is
suitable for chemical process simulations, while the method from
Houska et al. [21] is tailored to equation-based optimisation prob-
lems and requires the Lagrange function of the optimisation prob-
lem.

To date, c-optimality has only been applied for the optimal ex-
perimental design of clinical trials for dose-finding in the area of
toxicology studying [25-27] or the description of viral dynamics
and pharmacokinetics [28], but not in chemical engineering for
process flowsheet simulation. However, in particular for physical
properties for process flowsheet simulations, experiments for pa-
rameter estimation serve a purpose beyond the pure parameter
knowledge, which needs to be reflected by the OED objective.

In this work, we therefore investigate OED using c-optimality
for accurate chemical flowsheet simulations. Preliminary results of
this work have been published in a conference paper, in which
we discussed heuristically scaled OED for process simulations
[20]. Here, we focus on c-OED for chemical engineering prob-
lems (Section 2) and demonstrate the benefit of c-OED for ex-
traction and extraction-distillation process models (Section 3). We
design experiments for the estimation of parameters for activity
coefficient and diffusion models, considering their use in a flow-
sheet simulation. We compare the c-optimal experimental design
with the state-of-the-art OED in chemical engineering for param-
eter accuracy (D-optimal experimental design) and conventionally
used experimental designs without OED. Finally, we validate OED
theory by simulation of experiments using Monte-Carlo analysis
(Section 4) before concluding this paper for future work.

2. Background and method: optimal experimental design using
the c-optimality criterion

In this section, we briefly explain the state-of-the-art theory
and fundamentals of OED. We focus on c-OED, which we adapt to
the estimation of thermodynamic properties for chemical process
simulations. We start with deriving the c-optimal objective func-
tion (Section 2.1) before we explain how to solve OED problems
(Section 2.2). In Section 2.3, we introduce quality measurement cri-
teria to compare and validate the results in Section 3.

2.1. Derivation of the c-optimal objective function

In general, the goal of statistical OED is to minimize parameter
uncertainty. For this purpose, the objective is defined as a measure
of the variance-covariance matrix of parameters V. The parameter
variance-covariance matrix V4 can be approximated by the product
of the Fisher-Information-Matrix F (9, &) and the number of exper-
iments Nexp [29]:

V, ~ [NEXDF(& g)]_] (1)

As the parameter variance-covariance matrix Vy is proportional
to the inverse of F(@, &), OED usually focuses on optimising the
Fisher-Information-Matrix F (6, &) by selecting an optimal design &"
that contains the distribution of experiments independent from the

Fluid Phase Equilibria 557 (2022) 113420

total number of experiments Nexp. The Fisher-Information-Matrix
F((;’, &) depends on the chosen experimental design & and an ini-
tial parameter guess 0 if the model is not linear in the param-
eters [29]. For example, for OED of phase equilibria measure-
ments to parametrise the NRTL-model [30], an initial set of NRTL-
parameters has to be provided.

We represent every experimental design & by a design vector of
N distinct experimental settings z;, e.g. temperature and pressure
of each experiment, and corresponding N normalised weights v;,
which indicate the share of the total experimental effort [24]:

£= ZT zZ -+ 2N

Tl v - oy
The number of distinct experimental settings N is usually not
known a priori and a result of OED besides the specification of the
experimental settings.

The Fisher-Information-Matrix F (9, &) is calculated from the
underlying model of the experiment g(z,w,#) [29]. The model
g(z,w, 0) describes the experiments by relating the parameters 6
for given experimental settings z to the experimental measure-
ment results w. For flowsheet simulation of chemical processes, for
example, the model g(z, w, #) describes the experiments to mea-
sure liquid-liquid-equilibria or diffusion experiments. The experi-
ments are characterised by experimental settings z given as input
from the experimental design &, e.g. temperatures and concentra-
tions. The experimental measurements w are, for example, mea-
sured phase compositions.

The Fisher-Information-Matrix F(@, &) for a given experimental
design £ is calculated by multiplying the variance-covariance ma-
trix of the experimental measurements V,, by the model sensitiv-
ity to experimental measurements A, and the model sensitivity to
parameters B, for each experiment p of the experimental design

& [29]:

N
with > =1 (2)

i=1

N
F<a, g) => v, B, (A, VWA B, + 35! (3)
n=1

with the local model sensitivity to experimental measurements:
og
Ay =

— and the local model sensitivity to parameters: B, =
ow| !

w0
og
a0 wyd
The variance-covariance matrix of the experimental measure-
ments Vy is a key input parameter, which needs to be spec-
ified a priori from uncertainty measurements highlighting the
need for uncertainty reporting as part of good reporting prac-
tice for property measurements [31]. Already available informa-
tion on the parameter variance-covariance matrix, e.g. from previ-
ously performed experiments or the literature, can be included for
the design of further experiments in the Fisher-Information-Matrix

F(@, §) through X, since F(@, f;) is additive [24]. In this work, no

previously performed experiments are assumed; thus, X, 1 is not
further considered.

To account for the parameter use, the c-optimal design objec-
tive is to minimise a linear combination of the parameter vari-
ances, which is calculated by the product of a vector c(@) and

. -1
the inverse of the Fisher-Information-Matrix [F(G, E)] [4]. The

c-optimal experimental design & is the solution to this optimiza-
tion problem:

& = argmin c(@)T[F(a, E)]Jc(é) (4)
H
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For considering the property parameter use in a process simu-
lation, c(é) should reflect the linearised variance propagation of
the property parameter uncertainties through the process model.
Therefore, the first-order sensitivities of a scalar simulation output
to property parameters are chosen as weights of the linear com-
bination. Thereby, the property parameters are weighted by their
impact on the process model, e.g. the sensitivity of total process
energy demand with respect to NRTL-parameters. The variance of
a simulation output is thus obtained as c-OED objective. We calcu-
late the vector c(@) from the sensitivities of a scalar result of the
process model h(0, lc) to property parameters 6:

. oh(0,
am:—émﬁ— (5)

0.2

As both the model sensitivities for the Fisher-Information-Matrix
F(#, &) and the process model sensitivities for the vector c(6) are
calculated for given initial parameters 0, the resulting optimal ex-
perimental design is locally optimal for the given initial parame-
ters 6. The vector c(@) can also depend on further parameters, e.g.
specifications of the process model k, resulting in an additional de-
pendence of the optimal experimental design on these parameters.
These additional specifications, such as operation settings, must be
known a priori, e.g. from experience, known operation of similar
systems or process design.

In contrast to c-OED, state-of-the-art OED criteria do not con-
sider the process sensitivity to the property parameters expressed
by c(@). For example, the commonly used D-optimal experimen-
tal design yields the most accurate parameters by using only
the Fisher-Information-Matrix. A D-optimal experimental design &)
minimises the uncertainty of all parameters by maximising the de-
terminant of the Fisher-Information-Matrix [29]:

& =arg gnax log [det (F (3 ’g‘))] (6)

Generally, statistical OED as presented here requires several as-
sumptions on the model and the errors that have been sum-
marised, e.g. in [29] or [8]: (1) The model parameters # need to
be identifiable, and the true values for the measurements need to
lead to the true parameter values, i.e. no model bias is assumed.
(2) No errors are assumed in the independent variables, i.e. the
experimental settings z, and no systematic errors are assumed in
the measured variables w. (3) Errors in different experiments are
independent of each other and normally distributed with the same
covariance matrix V.

Importantly, the thermodynamic model g and the experimental
measurements w need to be carefully selected since multiple op-
tions exist for the model and the measured quantities. For exam-
ple, van Ness and coworkers showed that isobaric vapour-liquid-
equilibrium (VLE) measurement usually lead to large uncertainties
and model errors in contrast to isotherm VLE experiments [32,33].
Isobaric VLEs rely on vapour pressure equations used as input. If
inadequately parametrized, this input can cause a model bias in
the temperature dependence of the vapour pressure. The intrinsic
model bias then leads to incorrect parameters - independent of the
experimental design.

2.2. Solving OED problems

The computation of the OED objectives requires sensitivities.
The model sensitivities of the thermodynamic model to experi-
mental measurements and property parameters as well as the sen-
sitivities of the process model to property parameters are calcu-
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lated by first-order numerical differentiation using central differ-
ences. To ensure stable numerical differentiations, we performed a
parameter study and chose as the step size of 1 x 10~7 for the cal-
culation of the Fisher-Information-Matrix via imaginary variables
[34] and a stepsize of 1 x 10~ for the sensitivities of the process
model.

To solve optimal experimental design problems, several general-
purpose algorithms have been proposed in the literature [35]. In
this work, we use the general algorithm for computing optimal de-
signs with monotonic convergence by Yu [36].

The algorithm yields optimal experimental designs with a con-
tinuous distribution of experimental effort, also called continuous
designs [4]. A continuous design quantifies which share of the to-
tal experimental effort should be spent on which measurements.
Continuous designs suit as targets for experiments in the labo-
ratory, as these designs specify only relative experimental effort
for an infinite number of experiments. In practice, only a lim-
ited number of experiments can be performed. Therefore, imple-
mentable experimental designs for the laboratory, so-called exact
designs, can be calculated for a predefined number of experiments,
e.g. by rounding the continuous designs [4]. However, as round-
ing does not guarantee close approximation of continuous designs
[4], various algorithms for the calculation of exact designs have
been developed, e.g. non-sequential algorithms [37] or exchange
methods [38]. In the validation section of this paper, we use a
non-sequential algorithm for exact optimal designs as proposed by
Wynn [37] (Section 4). Exact designs can also be calculated con-
sidering previous experiments or literature data (cf. Eq. (3)), as fre-
quently required in practice. The exact design then yields the opti-
mal subsequent experiments, as demonstrated by [9].

2.3. Comparison of experimental designs

Experimental designs can be compared by OED-efficiencies,
which measure the effectiveness of an experimental design & com-
pared to an optimal design &*. In this work, we focus on c-
efficiency as a measure of process simulation accuracy and D-
efficiency as a measure of parameter accuracy. The efficiencies are
defined based on the c-optimal & or D-optimal design &} as [4]:

c®TF@.£)1c(d)
c®)TF(@8.£)1c(B)

1
det(F(é,g)) Mparameter

aec (F(0.65))

With Nparameter for the number of estimated model parameters. The
efficiencies are valuable metrics since they allow to determine the
number of experiments to achieve a particular accuracy. The in-
verse of the c- or D-efficiency describe how many experiments are
additionally required for the same accuracy compared to an opti-
mal design of the respective criterion. For example, a design with
a c-efficiency ¢ = 0.25 needs 4 times as many experiments for the
same process simulation accuracy than a c-optimal design.

- c-efficiency: £.(§) =

- D-efficiency: ¢p (&) =

3. Case studies

The c-OED is applied by computing continuous c-optimal ex-
perimental designs for liquid-liquid-equilibrium and diffusion ex-
periments for two process models of solvent-based processes as
an example:

1. Pinch-based process models for extraction and distillation
[39,40]
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2. Countercurrent rate-based extraction model with the HTU-NTU
model for sizing [41,42]

In both case studies, the thermodynamic model for liquid-
liquid-equilibrium measurements is taken from [8] and uses the
NRTL activity coefficient model [30]. For the HTU-NTU sizing of the
extraction column, diffusion coefficients are additionally required
and assumed to be measured using a closed cell with fixed ge-
ometries as the experimental setup [10].

We exemplify c-OED in this paper for the ternary system water-
acetone-toluene in both case studies. We limit the study to ternary
systems for ease of interpretation and visualisation. However, the
method of c-OED is not limited to ternary systems but is applicable
for multi-component systems with more than three components.

The chemical system water-acetone-toluene is a model system
of great interest in research and industry since it is applicable for
studying various processes such as extraction and distillation [43].
The components represent a variety of chemical interactions: Wa-
ter and toluene are almost completely immisci-ble since water is
a highly polar molecule, whereas toluene is highly unpolar. Ace-
tone is mildly polar and, thus, soluble in both water and toluene.
Toluene is consequently a suitable solvent for the extraction of
acetone from water since only acetone is attracted to the extract
toluene phase leading to a selective separation. Therefore, the sys-
tem is well suited to study the estimation of binary interaction pa-
rameters for extraction and extraction-distillation processes.

We compare the continuous c-optimal experimental designs as
targets for maximum experimental efficiency with state-of-the-
art OED for maximum parameter precision (D-optimal experimen-
tal design) and a conventional experimental design without OED,
which equally distributes the experimental effort over the design
space. Numerical details on the experimental designs and the ini-
tial property parameters for each design can be found in the Sup-
porting Information.

3.1. Pinch-based process models for extraction and distillation

For the pinch-based process models, we investigate two process
flowsheets: (1) An isothermal extraction modelled by one extrac-
tion column and (2) a hybrid extraction-distillation modelled by an
extraction column followed by a distillation column. The goal for
OED is to provide optimal liquid-liquid equilibrium measurements
to estimate isothermal NRTL-parameters for the extraction process
and temperature-dependent NRTL-parameters for the extraction-
distillation process.

3.1.1. OED for estimation of isothermal NRTL-t-parameters for an
extraction column

As the first case study, we investigate the extraction of ace-
tone from aqueous solution at 25 °C using toluene as a solvent.
The extraction column is modelled using a pinch-based process
model, taking NRTL-parameters as input [40]. Pinch-based process
models assume infinite columns operating at vanishing thermody-
namic driving force but consider the full non-ideal thermodynam-
ics. Therefore, the model yields the minimum solvent demand S,
required for this separation. In particular, for the selection of an
extraction solvent, the minimum solvent demand characterises the
extraction process as the performance metric h.

We aim to determine the minimum solvent demand S, for
extraction as accurately as possible. For this purpose, we use OED
to decide which LLE experiments should be performed to esti-
mate the six NRTL-t-parameters for the binary interactions. LLE
experiments are typically performed by equilibrating a liquid mix-
ture with known overall composition and miscibility gap in an
equilibrium cell. After equilibration, samples are drawn from each
liquid phase and the molar composition of each phase is mea-
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c-optimal
D-optimal

conventional

calculated binodale
total composition

operating range
of extraction column
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I c-optimal
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70 - 4

60 1

50 1

40 | 1

30 7 1

share of experimental effort / %

10 | 1

O 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09

measurement position a /-

Fig. 1. Experimental designs for LLE experiments for the extraction process: (A) Lo-
cation of LLE experiments. (B) Share of experimental effort. Part A of the figure also
shows the scalar quantity «, which characterises the centre of the tie lines and the
total composition of an experiment.

sured. Today, mixing, equilibration, sample drawing and measuring
is preferably integrated in an automated set-up [44-46].

For simplicity, we assume that LLE experiments are performed
with the overall composition of the components that corresponds
to the centre of the tie lines. The overall compositions of all exper-
iments lie on a line running from the center of the miscibility gap
of the binary subsystem to the critical point (cf. Fig. 1A). Each posi-
tion on this line is labeled by the scalar quantity « defined linearly
from the beginning in the binary subsystem (o = 0) to the end at
the critical point (o = 1), which thus defines each experiment ex-
actly [8]. As a result, the three-dimensional representation of the
overall composition of the experiment is precisely described by the
parameter ¢, without simplifying the problem. Measurements are
challenging close to the critical point. In addition, the NRTL model
is known to describe the phase equilibrium poorly close to the crit-
ical point, leading to model bias. To ensure experimental feasibility
and applicability of the NRTL-model, we limit & to a maximum of
0.9. Since we investigate ternary mixtures in this work, two molar
fractions are measured for each experiment and each liquid phase
(cf. thermodynamic model of LLE experiments by Dechambre et al.
[8]). For each measurement, we assume the same constant mea-
surement uncertainty o, = 0.005 (cf. Section 4).
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Table 1

c- and D-efficiencies ¢ and ¢p of the c-optimal &, D-optimal &} and equidistantly
distributed conventional ., experimental designs for the estimation of isothermal
NRTL-t-parameters and use in the pinch-based extraction process model.

Design & c-efficiency ¢ D-efficiency ¢p
c-optimal &; 1 0.44
D-optimal &, 0.36 1
conventional &, 0.10 0.56

The c-optimal experimental design selects three distinct loca-
tions for measurements (Fig. 1B). About 80 % of the experimen-
tal effort is placed near the operating range of the extraction col-
umn at o = 0.22. However, no experiments are performed in the
actual operating range of the extraction column. Instead, 20 % of
the experimental effort is placed in the high-curvature region of
the binodal curve at « > 0.65, in particular, 6 % at the design space
boundary at « = 0.9. Thus, the c-optimal experimental design pro-
vides another argument to support the previous conclusions that
the process operation settings should not be mimicked or copied
for for physical property experiments [32].

The D-optimal experimental design similarly focuses on three
distinct locations for measurements. However, in contrast to the c-
optimal design, 65 % of the experiments are placed in the high-
curvature region of the binodal curve, as already discovered by
Dechambre et al. [8]. In the high-curvature region of the binodal
curve, the phase equilibrium model is highly sensitive to the prop-
erty parameters. Thus, placing experiments in the high-curvature
region leads to low uncertainty in the parameter estimation. How-
ever, the c-efficiency of the D-optimal design is only ¢2 =0.36
(Table 1). Consequently, about three times more D-optimal than c-
optimal experiments are required to achieve the same accuracy in
the process simulation.

For an equidistantly distributed conventional experimental de-
sign, we specify three experimental settings since the c- and D-
optimal designs yielded three distinct settings. The experimen-
tal effort is equally distributed across all experiments. The con-
ventional design yields a low c-efficiency of only ¢f°" =0.10 de-
spite placing experimental effort within the operating range of
the extraction column in the solvent-carrier binary subsystem. As
a result, the conventional design requires about ten times more
experiments for the same process simulation accuracy as the c-
optimal design. Thus, the c-optimal experimental design promises
to achieve a significant reduction in experimental effort.

In terms of parameter precision, the c-optimal design scores
a D-efficiency of ¢§=0.44. In contrast, the conventional design
yields a D-efficiency of {§°" =0.56 and, thus, returns more ac-
curate parameter values than the c-optimal design. The low D-
efficiency of the c-optimal design illustrates the varying influence
of each property parameter on simulation accuracy. For the extrac-
tion process, not all parameters of the thermodynamic model are
equally important. For example, the binary interactions between
solvent and solute as well as carrier and solute are of major impor-
tance. However, the simulation results are much less sensitive to
the solvent-carrier interaction parameters, although low miscibility
between solvent and carrier resulting from the solvent-carrier in-
teractions is key for the extraction process. Nevertheless, highly ac-
curate estimation of the solvent-carrier interaction is not required
for accurate process simulations since small inaccuracies in the
solvent-carrier interaction parameters still lead to low miscibility
between solvent and carrier. Therefore, spending additional exper-
imental effort on increasing the parameter precision of these less
important parameters for the simulation reduces c-efficiency. In-
stead, the experimental effort is more efficiently spent on exper-
iments targeting the more influential property parameters of the
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simulation. For example, near the operating range of the extrac-
tion column, the thermodynamic model of the LLE experiments is
most sensitive to solvent-solute interaction, while the sensitivity to
solvent-carrier interactions is low. Therefore, the c-optimal design
places the majority of the experimental effort on the experimental
settings near the operating range. However, exclusive focus on the
property parameters most important for the chemical process sim-
ulation neglects the accuracy increase resulting from experiments
for overall high parameter precision. Therefore, the c-optimal de-
sign also includes experiments for overall parameter accuracy such
as experiments in the high-curvature region of the binodal curve
at ¢ =0.9.

3.1.2. OED for estimation of temperature-dependent
NRTL-t-parameter from LLE experiments for a hybrid
extraction-distillation process

As the second case study, we extend the extraction process
from Section 3.1.1 by a distillation column. First, acetone is ex-
tracted from the aqueous solution using toluene before acetone
is separated from the extract using distillation. Both the extrac-
tion and distillation columns are modelled using a pinch-based
process model [39,40]. For this case study, the key performance
metric h is the minimum reboiler energy demand of the distilla-
tion column Q,;, that we want to estimate as accurately as possi-
ble. We estimate two isothermal and two temperature-dependent
NRTL-t-parameters for each binary interaction pair because of the
temperature gradient in the distillation column. Therefore, in this
case study, c-OED is used to determine at which temperatures
and concentrations LLE experiments should be performed to cal-
culate the minimum reboiler energy demand Q,;, as accurately
as possible. For the demonstration of the c-OED, we limit the de-
signed experiments to LLE-experiments. In practice, however, the
NRTL parameters should be estimated through liquid-liquid -and
vapour-liquid-equilibrium experiments for higher accuracy [47]. As
in Section 3.1.1, we limit the design space to concentrations corre-
sponding to @ < 0.9 to ensure experimental feasibility and appli-
cability of the NRTL-model, and now also consider a temperature
range of 10-80°C.

The experimental designs consist of a non-trivial combination
of nine experimental settings for the c-optimal and eight for the
D-optimal design across the whole design space (Fig. 2). Both the
c- and D-optimal experimental designs mainly focus on the bound-
aries of the design space but avoid experiments at and near the bi-
nary subsystem of solvent and carrier with o < 0.2 (Fig. 2). At the
boundaries, where temperature is high or near the critical point at
high o, the thermodynamic model is particularly sensitive to the
property parameters reducing parameter uncertainty more than in
the centre of the design space. The binary subsystem is avoided for
all temperatures since both isothermal and temperature-dependent
parameters are more accurately estimated in the high-curvature
region of the binodal curve (cf. Section 3.1.1).

The c-optimal design favours experiments at lower « than the
D-optimal design as already discovered in the isothermal case
study (Section 3.1.1), e.g. the total experimental effort spent in the
c-optimal design for o < 0.6 equals 56 %. At low «, the binary in-
teractions between solvent and solute as well as carrier and so-
lute can be more accurately determined, which is crucial for a
high process simulation accuracy. In contrast, the D-optimal de-
sign places only 27 % of the total experimental effort on mea-
surements with o < 0.6. Similarly to the estimation of isother-
mal NRTL-parameters, experiments at higher « are important for
higher parameter precision.

To capture the temperature dependency accurately, the c-
optimal design places a large share of the experimental effort at
experiments with higher temperatures: 78 % of the total experi-
mental effort is spent for temperatures higher than 60°C. The fo-
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Table 2

c- and D-efficiencies ¢ and ¢p of the c-optimal &, D-optimal &, and equidis-
tantly distributed conventional ., experimental designs for the estimation of
temperature-dependent NRTL-7-parameters and use in the pinch-based extraction-
distillation process model.

Design & c-efficiency ¢c D-efficiency ¢p
c-optimal &; 1 0.62
D-optimal &} 0.61 1
conventional &, 0.24 0.55

cus on higher temperatures in the c-optimal design can be ex-
plained by the temperature glide from the condenser (T.oq =
74°C) to the reboiler (T, = 110°C) in the distillation column.
For an accurate description of distillation, capturing the temper-
ature dependence of the NRTL parameters is important, and at
higher temperatures, the temperature-dependent parameters are
more sensitive to the measurements.

The D-optimal design only allocates 43 % of the experimental
effort for temperatures higher than 60 °C to balance the estimation
of isothermal and temperature-dependent NRTL-parameters result-
ing in a c-efficiency of ¢2 = 0.61 (Table 2). Compared to the D-
optimal design for isothermal NRTL-parameters in Section 3.1.1, the
c-efficiency of the D-optimal design increases by 69 %. Therefore,
for the extraction-distillation process, parameter precision is gen-
erally more important for accurate process simulation than for the
extraction only. As a result, parameter precision as measured by
the D-efficiency also increases to ¢§ = 0.62 for the c-optimal de-
sign by about 40 % compared to the c-optimal design for isother-
mal NRTL-parameters.

For the conventional design, we assume equally distributed ex-
perimental effort on eight experimental settings across the design
space (Fig. 2). As in the first case study (Section 3.1.1), the op-
timal experimental designs significantly outperform the conven-
tional design in both process simulation and parameter accuracy
(8" = 0.24 and ¢{§°" = 0.55, Table 2) emphasising the benefits of
OED. In particular, the c-optimal experimental design is predicted
to reduce experimental effort by 75 % compared to the conven-
tional design for the same process simulation accuracy. Therefore,
manually distributing the experimental effort across a large design
space is particularly inefficient for subsequent use of the property
parameters in a process simulation.

3.2. Countercurrent rate-based extraction column with HTU-NTU
sizing

As the third case study, we again consider the extraction of
acetone from aqueous solution at 25°C using toluene as a sol-
vent based on the Ph.D. thesis by Wolff [48]. However, in con-
trast to Case Study 1 (Section 3.1.1), we use a countercurrent rate-
based extraction model with HTU-NTU sizing instead of a pinch-
based process model. The countercurrent extraction column as-
sumes mass transfer of the solute only, following two-film the-
ory with a constant mass transfer coefficient and thermodynamic
equilibrium at the interface. In contrast to the pinch-based process
models, we include sizing using the HTU-NTU method [41,42] and
costing [49] (see SI for detailed equations). Therefore, the final
model result is the total annualised cost (TAC), which should be
determined as accurately as possible using c-OED.

As a consequence, the model needs both isothermal NRTL-7-
and diffusion parameters as property data. Therefore, we extend
the OED to the selection of experiments for several thermodynamic
properties. The optimal experimental design not only yields which
LLE and diffusion experiments to perform but also balances the
experimental effort between LLE and diffusion experiments. Thus,
the design vector of experiments & includes the scalar measure o
of LLE-experiments and additionally the effort on experiments for
the diffusion coefficients of acetone in water Dy and acetone in
toluene Dr.

The diffusion experiments are assumed to be performed in a
closed diffusion cell filled with equal volumes of two substances.
The diffusion coefficients are derived from concentration measure-
ments using Fick’s second law. Here, we assume measurements at
one position § in the closed cell and at one dimensionless mea-
surement time given by the Fourier number Fo [10]. Therefore, the
OED methodology determines the optimal Fourier number Fo* and
the optimal measurement position §*. For the calculations, a stan-
dard deviation of oy = 0.5% is assumed in measuring the phase
compositions in the LLE experiments and the concentrations in the
diffusion experiments.

For the LLE experiments, c-optimal design selects the same
three measurements with the same relative distribution of ex-
perimental effort among the LLE experiments as the OED for
the pinch-based process model for extraction in Section 3.1.1 (cf.
Fig. 1). Therefore, the dominating interactions for describing the
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Fig. 3. Experimental designs for LLE and diffusion experiments for the extraction model using the HTU-NTU approach.

minimum solvent demand using the pinch-based process model
are also most important for the countercurrent rate-based extrac-
tion model. The selection of the same experimental settings is rea-
sonable since both process models use the same thermodynamic
model describing the liquid-liquid equilibrium as a basis for the
solvent demand and cost calculations. Therefore, a precise descrip-
tion of the extraction process is a prerequisite for accurate cost
calculation. Naturally, the D-optimal design equals the D-optimal
design in Section 3.1.1 if focusing only on the LLE experiments
since the same thermodynamic model describing the experiments
is considered.

The diffusion experiments have the same optimal design using
either c- or D-OED: The most accurate estimation of diffusion co-
efficients is achieved at a Fourier number Fo* = 0.1 and the mea-
surement position §* =0, i.e. at the wall of the closed diffusion
cell. Moreover, the experimental effort is equally distributed be-
tween the diffusion coefficients of acetone in water Dyy and ace-
tone in toluene Dy for both designs (cf. Fig. 3).

However, the designs differ strongly in the distribution of ex-
perimental effort between LLE and diffusion experiments: The c-
optimal design focuses 96 % of the total experimental effort on
LLE experiments and only 4 % on the diffusion experiments. There-
fore, the property parameters describing the phase behaviour are
more important for accurate process simulation and costing than
the parameters describing the diffusion. In contrast, the D-optimal
design places 25 % of the experimental effort on diffusion exper-
iments and yields a c-efficiency ¢P = 0.46 (Table 3). Compared to
D-optimal design in Case Study 1, the c-efficiency of the D-optimal
design improves since the D-optimal design selects the same op-
timal diffusion experiments as the c-optimal design. The process
simulation accuracy benefits more from performing the optimal
diffusion experiments than from LLE experiments that are sub-
optimal for the process model accuracy. Still, the D-optimal de-
sign doubles the experimental effort compared to the c-optimal
design.

In terms of parameter accuracy, the limited experimental effort
on diffusion experiments in the c-optimal design results in low ex-

Table 3

c- and D-efficiencies ¢c and ¢p of the c-optimal &, D-optimal &} and equidistantly
distributed conventional &, experimental designs estimation of isothermal NRTL-
t-and diffusion parameters and use in the countercurrent rate-based extraction
process model.

Design & c-efficiency ¢ D-efficiency ¢p
c-optimal &, 1 0.39
D-optimal &, 0.46 1
conventional &, 0.11 0.62

pected accuracy of the diffusion coefficient estimation. As a result,
the D-efficiency of the c-optimal design is only ¢§ = 0.39.

For the conventional experimental design, we manually allo-
cate 60 % of the experimental effort on three equally weighted
and distributed LLE experiments as in Section 3.1.1. The remain-
ing 40 % of the experimental effort is equally distributed between
the two diffusion experiments. We assume that the optimal set-
tings with Fo* = 0.1 and §* = 0 are also selected for each diffusion
experiment in the conventional design as these settings have been
disclosed in our previous work [10]. As a result, the conventional
design yields c- and D-efficiencies of ¢f°" = 0.11 and ¢5°" = 0.62.
Similarly to Case Study 1, the conventional design has a substan-
tially lower c-efficiency than the D-optimal design but a com-
parable D-efficiency to the c-optimal design. Both the c- and D-
efficiencies of the conventional design increase by 10 % compared
to Case Study 1. Similar to the D-optimal design, the conventional
design benefits from the optimal diffusion experiments, which in-
creases both the overall accuracy of parameter estimation and pro-
cess simulation results.

4. Discussion: uncertainties resulting from the experimental
designs

In this section, we challenge the predictions from OED theory
by Monte-Carlo analysis for the pinch-based process models of ex-
traction and extraction-distillation since these two case studies ex-
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Fig. 4. Procedure for determining the uncertainties of the process simulation results for each experimental design.

hibit the minimum and maximum difference in c-efficiencies re-
ported in this paper. In c-OED theory, the standard deviation of
the process simulation result is predicted assuming linear variance
propagation. However, process models are usually highly nonlin-
ear. Therefore, assuming linear variance propagation from experi-
ments through parameter estimation and process model only ap-
proximates the actual variance propagation. Here, we compare the
uncertainty from linear variance propagation in c-OED with propa-
gation from uncertain experimental measurements using a Monte-
Carlo approach. For this purpose, we simulate LLE experiments by
calculating phase compositions using the initial property parame-
ters (see SI) and adding normally distributed noise to account for
measurement errors. Afterwards, we estimate property parameters
from the simulated experiments and run the process simulation
using the estimated parameters to obtain the actual process model
uncertainty. In detail, we apply the following five-step procedure
(Fig. 4):

1. Design optimal experiments: First, we calculate exact c- and D-
optimal designs for a predefined number of experiments using
a non-sequential algorithm [37]. Since the resulting exact de-
signs depend on the initialisation of the algorithm, we run the
algorithm repeatedly from random starting points to aim for
a globally optimal solution. We also create a conventional de-
sign, which equidistantly distributes the same number of ex-
periments across the design space.

2. Simulate experiments: From the initial property parameters and
the thermodynamic model of the LLE experiments, we calcu-
late the phase compositions that result from the experimental
designs of Step 1. For this purpose, we assume that the ini-
tial property parameters lead to the true phase compositions.
Subsequently, we add measurement errors to the true phase
compositions by sampling from a Gauss distribution with mean
zero and a standard deviation corresponding to typical uncer-
tainty for phase compositions in LLE measurements published
in the literature. The typical standard deviation for measuring
molar fractions oy ranges between 0.001 [50,51] and 0.005
[45,46,52], depending on the measurement method. In this
work, we choose a standard deviation oy = 0.005, as higher
uncertainties are more challenging for the experimental design
methodology because of the assumption of locally optimal de-
signs. For comparison, we also performed Monte Carlo analyses
for ow = 0.001 and oy = 0.01, which can be found in the Sup-
porting Information.

3. Estimate property parameters: From the simulated experiments,
we estimate the property parameters by fitting the thermo-
dynamic model of the LLE experiments. For this purpose, we
use the MATLAB solver Isqcurvefit [53] considering 10 starting
points for each fit to aim for a globally optimal solution. The di-
rect use of global optimization methods as proposed by Mitsos
et al. [54] would be a promising extension for future work.

4. Calculate process simulation: We use the estimated property pa-
rameters as input for the process simulation to obtain the ac-
tual propagation of the estimated property parameters on the
process simulation result.

5. Calculate uncertainty of process simulation: We repeat steps 2-4
until 1000 process simulation results are obtained for each ex-
perimental design. From the 1000 simulation results, we calcu-
late the root mean square error (RMSE) between the simulation
results of the estimated parameters from Monte Carlo analysis
and the simulation result of initial parameters for each design.
The RMSE of the Monte Carlo samples is compared to the ex-
pected uncertainty from linear error propagation given by the
standard deviation of OED theory. Both the RMSE and the stan-
dard deviation are normalized by the actual value of the pro-
cess simulation result to allow for relative comparisons.

4.1. Accuracy of the extraction process simulation

We investigate the accuracy of the extraction process simula-
tion depending on the experimental design by estimating the six
isothermal NRTL-t-Parameters of the ternary system for 5, 7, 10,
15 and 20 LLE experiments as an example. We measure the uncer-
tainty of the process simulation by computing the relative RMSE
of the minimum solvent demand resulting from the pinch-based
process model. Generally, the uncertainty of the process simulation
results is low, with a relative RMSE of 2-6 % (Fig. 5). Therefore, a
small number of experiments, e.g. 5 to 10, is already sufficient for
an accurate description of the extraction process.

The predictions from linear variance propagation using the c-
optimal objective function (hatched bars) and Monte Carlo analysis
(full bars) agree well for each design. The c-optimal objective func-
tion successfully predicts qualitatively and quantitatively the un-
certainties of the simulation results: For the investigated numbers
of experiments, the c-optimal design yields the lowest uncertainty
in the Monte Carlo analysis as predicted, followed by the conven-
tional and the D-optimal design. For each experimental design, the
relative RMSE decreases monotonically with an increasing number
of experiments, as expected from OED theory (cf. Eq. (1)). Thus,
for the simulation of the extraction process, Monte Carlo analysis
confirms the benefits promised by c-OED theory on simulation ac-
curacy.

Notably, the exact conventional designs with 5-20 experiments
yield c-efficiencies between 0.43 and 0.46 and thus, exceed the
c-efficiencies of the continuous conventional designs with only
three distinct experimental settings (cf. Section 3.1.1). Therefore,
the exact conventional designs outperform the exact D-optimal de-
signs in simulation accuracy for this example. The differences in
c-efficiency compared to Section 3.1.1 result from the differences
between continuous and exact conventional designs and are cor-
rectly reflected by the c-optimal objective function.

4.2. Accuracy of the extraction-distillation process simulation

For the hybrid extraction-distillation process, we estimate the
six isothermal and six temperature-dependent NRTL-7-parameters
of the ternary system by performing 20, 25, 30, 40 or 50 experi-
ments. We choose more experiments than for the extraction pro-
cess to capture the temperature dependence with additional pa-
rameters. The uncertainty of the process model is measured by the
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relative RMSE of the minimum reboiler energy demand resulting
from the pinch-based process models.

The relative RMSE of the simulation result range between 10-
17 % for the Monte Carlo analysis (full bars, Fig. 6) and are thus
about one order of magnitude higher for the extraction-distillation
with temperature-dependent NRTL-parameters compared to the
extraction with isothermal NRTL-parameter. Qualitatively, the re-
sults from the Monte Carlo analysis agree with the ranking ob-
tained from OED theory: The c-optimal design provides the low-
est uncertainty in process simulation results, followed by the D-
optimal and the conventional design. However, the results from the
Monte Carlo analysis deviate quantitatively from OED theory: For
the investigated c-optimal designs, the OED theory underestimates
the actual uncertainty of process simulation results by up to 38 %
of the predicted uncertainty. In contrast, for the investigated con-
ventional designs, the OED theory overestimates the actual uncer-
tainty of the process simulation results by up to 69 % of the actual
uncertainty. The predictions for the D-optimal designs match well
with the Monte Carlo analysis for 20 and 25 experiments. For 30,
40 and 50 experiments, however, the predictions for the D-optimal

10

designs are increasingly overestimated by up to 25 % of the pre-
dicted uncertainty. The results indicate that the assumption of lin-
ear error propagation is limited. The improvements predicted by
linear variance propagation for c-OED cannot always be achieved.
However, c-OED still proves to provide the most accurate simula-
tion results.

In contrast to the c-optimal design, the relative RMSE of the
D-optimal design from the Monte Carlo sampling is not always
underestimated by OED theory. For fewer experiments, i.e. 20 ex-
periments, the D-optimal design yields a lower uncertainty in the
Monte Carlo analysis than predicted by OED theory. Therefore,
the accuracy improvement of the c-optimal design decreases com-
pared to the D-optimal design and eventually disappears for the
extraction-distillation process if only a minimum number of exper-
iments is performed (cf. analysis in the SI). Thus, for a small num-
ber of experiments, an improvement in simulation accuracy cannot
be guaranteed by c-OED.

For these experiments, the accuracy increase in the process
simulation through c-OED is counterbalanced by the impact of in-
accurate property parameters. The property parameter accuracy of
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c-OED is lower since overall parameter precision is not the goal of
c-OED. Thus, the parameters from c-optimal experiments are more
prone to measurement uncertainties and more strongly affected by
inaccurate measurements for a small number of experiments.

However, if the number of experiments is increased beyond
the minimal number, c-optimal design outperforms the D-optimal
and conventional designs. The c-optimal design monotonically de-
creases in simulation uncertainty, which is not guaranteed for the
D-optimal and conventional design. For higher uncertainties in
mole fraction measurements, e.g. ow = 0.01, the same qualitative
trend can be observed (see analysis in the SI).

In conclusion, the property parameters should be tailored for
use in a process simulation but the overall parameter accuracy
cannot always be ignored to obtain accurate and robust simulation
results. Since the parameters estimated from c-OED are tailored to
a specific process, these parameters are not optimal for every pur-
pose. If the parameters are not only used for process simulation
but also for, e.g. gaining thermodynamic insights, the OED objec-
tive needs to be adapted.

A single OED optimality criterion rarely leads to optimal pa-
rameters for all purposes since the individual OED objectives con-
flict with each other. For the extraction-distillation process, e.g. c-
and D-efficiency form a well-defined Pareto frontier (Fig. 7). Nei-
ther c-efficiency nor D-efficiency of an optimal multi-objective de-
sign can be improved without deteriorating the efficiency of the
other objective. Therefore, a multi-objective design needs a care-
fully balanced optimality criterion. However, the Pareto frontier
shows good trade-off solutions: c-efficiency for accurate process
simulations can be substantially increased with small losses to the
D-efficiency representing parameter accuracy. E.g. a trade-off point
minimizing the distance to the utopia point (3% = ¢4 =1) re-
tains a D-efficiency of é'[t)" = 0.89 while increasing c-efficiency from
¢P =0.6 to ¢f° = 0.9. The study of such trade-offs could be a valu-
able use of the introduced c-efficiency concept.

In future work, the parameter precision of the c-optimal design
can further be considered towards more robust designs for param-
eter estimation, e.g. by compound design [24] such as combined
c- and D-optimal design [55], or by introducing a minimum D-
efficiency as a constraint within the optimisation [26,27]. Meth-
ods from the area of robust experimental design can also be ex-
plored to strengthen the c-optimal design for reliable improvement
of simulation accuracy, e.g. by considering the most inaccurate pro-
cess simulation as objective for OED [56].
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5. Conclusion

In this paper, we introduced c-optimal experimental design (c-
OED) as a method of optimal experimental design for chemical en-
gineering problems. c-OED minimises the uncertainty of the pro-
cess simulation result instead of parameter precision as the design
objective. Thus, c-OED considers the application of estimated prop-
erty parameters in a process simulation already during the design
of experiments. To estimate the uncertainty of the process simula-
tion results, c-OED uses linear variance propagation from uncertain
property parameters through the process model.

We demonstrate c¢-OED for estimating isothermal and
temperature-dependent NRTL-parameters from liquid-liquid equi-
librium experiments for an extraction column and an extraction-
distillation process modelled by pinch-based process models. The
LLE experiments are designed to minimise the uncertainty of the
main thermodynamic performance measures: the minimum sol-
vent demand of the extraction and the minimum energy demand
of the extraction-distillation process. Moreover, for a rate-based
extraction column sized by the HTU-NTU model, we simultane-
ously design liquid-liquid equilibrium and closed-cell diffusion
experiments that minimise the uncertainty of the total annualised
cost of the extraction column.

The application of c-OED for chemical processes shows that
considering the sensitivity of the process within OED highly im-
pacts the selection of experiments for property parameter estima-
tion. c-OED yields non-trivial experimental designs that outper-
form state-of-the-art OED in accuracy of process simulation results.
The c-optimal experiments focus on the accurate estimation of pa-
rameters most relevant for accurate process simulations. The pri-
oritisation of experiments for specific parameters is particularly ev-
ident in the simultaneous design of LLE and diffusion experiments:
The major experimental effort of the c-optimal design for the rate-
based extraction column is spent on LLE instead of diffusion exper-
iments.

Compared to state-of-the-art OED, c-OED reduces the experi-
mental effort by up to 64 % for the same accuracy in our case
studies. Conventionally designed experiments without using OED
would increase the experimental effort compared to ¢-OED by up
to a factor of 10, highlighting the need for (c)-OED.

The predictions on accuracy from c-OED theory are examined
by Monte Carlo Analysis to challenge the linear approximation of
variance propagation. Generally, the OED predictions agree well
with the results from Monte Carlo Analysis, and thus, the assump-
tion of linear variance propagation is a good approximation of the
actual variance propagation. In our case studies, process simulation
accuracy significantly increases through c-OED. The uncertainty of
process model results decreases by 30-40 % for an extraction pro-
cess and by 5-25 % for an extraction-distillation process compared
to conventional experimental designs and state-of-the-art OED that
does not consider the process. Therefore, c-OED increases accuracy
even for highly nonlinear process models and is thus successfully
shown to tailor experiments for thermodynamic properties to pro-
cess simulations.

For future work, the focus should be directed to strengthening
the robustness of the c-optimal design, e.g. by compound design
[24]. The predictions from c-OED theory can fail due to overall in-
accurate property parameters if too few experiments are consid-
ered. The c-optimal experimental designs increase the accuracy of
process simulations at the expense of other OED efficiencies, e.g.
D-efficiency for parameter accuracy. However, efficient trade-off
solutions can be identified balancing process simulation and pa-
rameter accuracy. Balanced compound or multi-objective designs
allow to identify such trade-off solutions.

Considering multiple operating points of the process simulation
instead of only one operating point, e.g. by L- or Dy-optimality
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[4,27], could extend the accuracy increase by c-OED for a broader
simulation range of the process model. For an extension from pro-
cess simulation to process optimisation and design, the sensitiv-
ities of the optimal process variables to the uncertain property
parameters need to be considered. For example, the first-order
derivatives of optimised process simulation outputs with respect
to property parameters could be integrated into c-OED. Ultimately,
this approach would formally transform the idea of c-OED into
the method of weighted A-optimality presented by [21]. Moreover,
in practice, the initial parameter guesses rarely match the opti-
mal parameters. Thus, an iterative procedure is usually required
[57] that involves not only OED but also parameter fitting, vali-
dation and consistency tests. Therefore, future work should inves-
tigate the influence of initial property parameters on the benefit
from c-optimal design.
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