000911226 001__ 911226
000911226 005__ 20240712112906.0
000911226 0247_ $$2doi$$a10.1021/acs.est.2c02888
000911226 0247_ $$2ISSN$$a0013-936X
000911226 0247_ $$2ISSN$$a1520-5851
000911226 0247_ $$2Handle$$a2128/33932
000911226 0247_ $$2pmid$$a36032028
000911226 0247_ $$2WOS$$aWOS:000849807400001
000911226 037__ $$aFZJ-2022-04531
000911226 082__ $$a333.7
000911226 1001_ $$0P:(DE-HGF)0$$aKleinekorte, Johanna$$b0$$eCorresponding author
000911226 245__ $$aWhat Shall We Do with Steel Mill Off-Gas: Polygeneration Systems Minimizing Greenhouse Gas Emissions
000911226 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2022
000911226 3367_ $$2DRIVER$$aarticle
000911226 3367_ $$2DataCite$$aOutput Types/Journal article
000911226 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1676643285_10706
000911226 3367_ $$2BibTeX$$aARTICLE
000911226 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911226 3367_ $$00$$2EndNote$$aJournal Article
000911226 520__ $$aBoth the global steel and chemical industries contribute largely to industrial greenhouse gas (GHG) emissions. For both industries, GHG emissions are strongly related to the consumption of fossil resources. While the chemical industry often releases GHGs as direct process emissions, steel mills globally produce 1.78 Gt of off-gases each year, which are currently combusted for subsequent heat and electricity generation. However, these steel mill off-gases consist of high value compounds, which also can be utilized as feedstock for chemical production and thereby reduce fossil resource consumption and thus GHG emissions. In the present work, we determine climate-optimal utilization pathways for steel mill off-gases. We combine a nonlinear, disjunctive model of the steel mill off-gas separation system with a large-scale linear model of the chemical industry to perform environmental optimization. The results show that the climate-optimal utilization of steel mill off-gases depends on electricity’s carbon footprint: For the current electricity grid mix, methane, hydrogen, and synthesis gas are recovered as feedstocks for conventional chemical production and enable a methanol-based chemical industry. For low electricity footprints in the future, the separation of steel mill off-gases supports CO2-based production processes in the chemical industry, supplying up to 30% of the required CO2. By coupling the global steel and chemical industry, industrial GHG emissions can be reduced by up to 79 Mt CO2-equivalents per year. These reductions provide up to 4.5% additional GHG savings compared to a stand-alone optimization of the two industries, showing a limited potential for this industrial symbiosis.
000911226 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000911226 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911226 7001_ $$0P:(DE-HGF)0$$aLeitl, Matthias$$b1
000911226 7001_ $$0P:(DE-HGF)0$$aZibunas, Christian$$b2
000911226 7001_ $$0P:(DE-Juel1)172023$$aBardow, André$$b3$$ufzj
000911226 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/acs.est.2c02888$$gVol. 56, no. 18, p. 13294 - 13304$$n18$$p13294 - 13304$$tEnvironmental science & technology$$v56$$x0013-936X$$y2022
000911226 8564_ $$uhttps://juser.fz-juelich.de/record/911226/files/acs.est.2c02888.pdf$$yRestricted
000911226 8564_ $$uhttps://juser.fz-juelich.de/record/911226/files/2021_Kleinekorte_paper.pdf$$yPublished on 2022-08-29. Available in OpenAccess from 2023-08-29.
000911226 909CO $$ooai:juser.fz-juelich.de:911226$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911226 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000911226 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000911226 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000911226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172023$$aForschungszentrum Jülich$$b3$$kFZJ
000911226 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)172023$$a ETH Zürich$$b3
000911226 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000911226 9141_ $$y2022
000911226 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000911226 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENVIRON SCI TECHNOL : 2019$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENVIRON SCI TECHNOL : 2019$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000911226 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger
000911226 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000911226 920__ $$lyes
000911226 9201_ $$0I:(DE-Juel1)IEK-10-20170217$$kIEK-10$$lModellierung von Energiesystemen$$x0
000911226 9801_ $$aFullTexts
000911226 980__ $$ajournal
000911226 980__ $$aVDB
000911226 980__ $$aUNRESTRICTED
000911226 980__ $$aI:(DE-Juel1)IEK-10-20170217
000911226 981__ $$aI:(DE-Juel1)ICE-1-20170217