001     911226
005     20240712112906.0
024 7 _ |a 10.1021/acs.est.2c02888
|2 doi
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |a 1520-5851
|2 ISSN
024 7 _ |a 2128/33932
|2 Handle
024 7 _ |a 36032028
|2 pmid
024 7 _ |a WOS:000849807400001
|2 WOS
037 _ _ |a FZJ-2022-04531
082 _ _ |a 333.7
100 1 _ |a Kleinekorte, Johanna
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a What Shall We Do with Steel Mill Off-Gas: Polygeneration Systems Minimizing Greenhouse Gas Emissions
260 _ _ |a Columbus, Ohio
|c 2022
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676643285_10706
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Both the global steel and chemical industries contribute largely to industrial greenhouse gas (GHG) emissions. For both industries, GHG emissions are strongly related to the consumption of fossil resources. While the chemical industry often releases GHGs as direct process emissions, steel mills globally produce 1.78 Gt of off-gases each year, which are currently combusted for subsequent heat and electricity generation. However, these steel mill off-gases consist of high value compounds, which also can be utilized as feedstock for chemical production and thereby reduce fossil resource consumption and thus GHG emissions. In the present work, we determine climate-optimal utilization pathways for steel mill off-gases. We combine a nonlinear, disjunctive model of the steel mill off-gas separation system with a large-scale linear model of the chemical industry to perform environmental optimization. The results show that the climate-optimal utilization of steel mill off-gases depends on electricity’s carbon footprint: For the current electricity grid mix, methane, hydrogen, and synthesis gas are recovered as feedstocks for conventional chemical production and enable a methanol-based chemical industry. For low electricity footprints in the future, the separation of steel mill off-gases supports CO2-based production processes in the chemical industry, supplying up to 30% of the required CO2. By coupling the global steel and chemical industry, industrial GHG emissions can be reduced by up to 79 Mt CO2-equivalents per year. These reductions provide up to 4.5% additional GHG savings compared to a stand-alone optimization of the two industries, showing a limited potential for this industrial symbiosis.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Leitl, Matthias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Zibunas, Christian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bardow, André
|0 P:(DE-Juel1)172023
|b 3
|u fzj
773 _ _ |a 10.1021/acs.est.2c02888
|g Vol. 56, no. 18, p. 13294 - 13304
|0 PERI:(DE-600)1465132-4
|n 18
|p 13294 - 13304
|t Environmental science & technology
|v 56
|y 2022
|x 0013-936X
856 4 _ |u https://juser.fz-juelich.de/record/911226/files/acs.est.2c02888.pdf
|y Restricted
856 4 _ |y Published on 2022-08-29. Available in OpenAccess from 2023-08-29.
|u https://juser.fz-juelich.de/record/911226/files/2021_Kleinekorte_paper.pdf
909 C O |o oai:juser.fz-juelich.de:911226
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172023
910 1 _ |a ETH Zürich
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)172023
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENVIRON SCI TECHNOL : 2019
|d 2021-02-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENVIRON SCI TECHNOL : 2019
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-10-20170217
|k IEK-10
|l Modellierung von Energiesystemen
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-10-20170217
981 _ _ |a I:(DE-Juel1)ICE-1-20170217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21