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Abstract1

The absence of accurate thermodynamic models for reductive dimethoxymethane (DMM)2

synthesis has limited the design of corresponding processes to approximate calculations only.3

To enable a more reliable process design, we measure liquid equilibrium densities and fit pa-4

rameters for the PCP-SAFT equation of state (EOS). This EOS is highly accurate for systems5

at high pressures and therefore suitable for the high pressure reactor and the flash unit for gas6

recycling. As the resulting flowsheet optimization problem is nonconvex, we use our determin-7

istic global solver MAiNGO to solve the problem. To improve computational tractability, we8

approximate process models that require the PCP-SAFT EOS with artificial neural networks9

and Gaussian processes. Finally, the so-called reduced-space problem formulation and a hy-10

brid of the McCormick and the auxiliary variable method enable convergence within 5.8 CPUh.11

At the optimal operating conditions, an exergy efficiency of 91.9 % is achieved for a reactor12

pressure of 120 bar.13

Keywords: hybrid modeling, global optimization, process design, dimethoxymethane, PCP-SAFT14
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1 Introduction1

As the mobility sector accounts for more than 20 % of global greenhouse gas emissions,1 it plays2

a crucial role in climate change mitigation. Whereas battery electric vehicles become increasingly3

relevant for new vehicles, the existing fleet of passenger cars and long-haul transportation most4

likely will continue to depend on liquid fuels with a high energy-density for the next decades.5

In this regard, dimethoxymethane (DMM) and its derivatives polyoxymethylene ethers (OME3-5)6

are promising synthetic fuels, which can be produced from renewable hydrogen (H2) and carbon7

dioxide (CO2)2–6 or from biomass.7–11 In addition to their potentially clean production from re-8

newable resources, their clean combustion12,13 and similar fuel properties to diesel14,15 make them9

an attractive (partial) replacement for diesel. However, their economic and environmentally benign10

production still remains challenging.11

By only replacing fossil-based raw materials with renewable ones, major process inefficiencies12

remain present within the established process concepts via DMM and trioxane.3,4 Therefore, new13

processes need to be developed. One alternative to the established process for OME3-5 produc-14

tion is its direct synthesis from methanol and aqueous formaldehyde (FA),16,17 thus circumvent-15

ing the energy intensive process step for trioxane production. However, the presence of water in16

such a process route inhibits OME3-5 formation and complicates product purification.18 Promising17

process concepts that can effectively remove water from the system are currently under develop-18

ment.4,19,20 Another process alternative is the anhydrous synthesis of OME3-5 from dimethyl ether19

(DME) and trioxane.21,22 However, this still requires an energy-intensive trioxane production step.20

In contrast, a process route via DMM and gaseous FA23,24 can be highly resource efficient—which21

is key for power-to-X processes—if gaseous FA is produced via methanol dehydrogenation25 and22

DMM via the direct reduction of CO2.26
23

Whereas there has been extensive work on FA synthesis via methanol dehydrogenation within24

the last decades, DMM synthesis via direct CO2 reduction has just recently been discovered. The25

existing publications on process development, including our own,27 rely on intermediate-fidelity26

models incorporating activity coefficient thermodynamic models. Activity coefficient models are27
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however usually not accurate at high pressures28 and for systems containing significant amounts of1

quadrupolar components (e.g., CO2). For such systems, to which the reductive synthesis of DMM2

belongs to, equations of state (EOS) should be preferred. In this regard, the perturbed-chain polar3

statistical associating fluid theory (PCP-SAFT) EOS29,30 has been successfully applied to various4

systems.31 The necessity of a complicated thermodynamic model in combination with typically5

nonlinear process unit models for such chemical processes results in a nonconvex optimization6

problem, which makes deterministic process optimization for the direct CO2 reduction challenging.7

Especially deterministic global optimization, which is required to guarantee optimal solutions for8

nonconvex problems, is often computationally not tractable.9

In this work, we measure liquid equilibrium densities and use data from the open literature to10

fit missing binary parameters of the PCP-SAFT EOS for the underlying system of components.11

We then use the PCP-SAFT EOS to develop data-driven models to make global optimization for12

reductive DMM production tractable while keeping model accuracy high. More specifically, we13

use a data-driven model for the reactor to predict the solubility of H2 and CO2 in the liquid reaction14

mixture at high pressure and their conversion with methanol to DMM. Additionally, a data-driven15

model is developed for the flash downstream the reactor unit that recycles unreacted gaseous com-16

ponents. To also account for DMM purification and identify the least energy-intensive separation17

process, we consider two alternative distillation column sequences formulated as a simple super-18

structure.19

Section 2 introduces the process concept that is used for process optimization and the underly-20

ing chemical reaction. In Section 3, we fit binary PCP-SAFT parameters and develop data-driven21

models for the reactor and the flash unit, as well as the superstructure model for distillation col-22

umn sequencing. On the basis of these models, Section 4 describes how the optimization problem23

is solved using our open-source deterministic global solver MAiNGO,32 before the results are24

discussed. In Section 5, we conclude our findings.25

4



2 DMM production via direct CO2 reduction1

The production of DMM via the direct reduction of CO2 is based on the reaction2

2CH3OH+CO2 +2H2 −−⇀↽−− DMM+2H2O, (R1)

which is catalyzed by a ruthenium-based catalyst.26,33 In this reaction, CO2 and H2 are dissolved3

under high pressure in methanol, where the formation of the intermediate product methyl formate4

(MF) takes place, before it is finally converted to DMM.5

In our previous publication,27 we developed a hierarchical process development and com-6

parison methodology that we applied to several reaction pathways for DMM production. Using7

intermediate-fidelity models, the reaction pathway according to Reaction (R1) was found to be8

the most suitable one for sustainable DMM production at its current state of development. As the9

goal of this study is to refine the process and optimize its design and operating conditions using10

a more accurate thermodynamic model, some process modifications are required (Fig. 1). First,11

the unreacted gases dissolved in the liquid reactor effluent are separated by a flash and a low-12

temperature distillation column. Second, as the amount of MF at reaction equilibrium is negligible13

(based on our own calculations considering the two-step reaction26 with MF as an intermediate)14

and its recycling together with H2 and CO2 is simple, we do not consider MF formation in this15

study. Third, we do not consider a fixed distillation column sequence for the purification of DMM16

as it is dependent on the upstream reaction performance. Instead, we use a superstructure model to17

incorporate the choice for the optimal sequence into the optimization resulting in a mixed-integer18

nonlinear program (MINLP). As the mixture contains an azeotrope between methanol and DMM,19

a pressure swing distillation (column D1 and D2) is considered (Fig. 1). Finally, we only consider20

DMM synthesis from methanol, CO2, and H2. Thus, we do not optimize the upstream process for21

methanol production via CO2 hydrogenation.22
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Figure 1 Process flowsheet for the reductive production of DMM. The corresponding process
model includes a data-driven model for the reactor, where the vapor-liquid reaction (R1) takes
place at high pressure, and a data-driven model for a flash unit, where unreacted H2 and CO2 is
separated and recycled. Downstream the distillation column D0, which separates remaining CO2,
a superstructure model for the purification of DMM using pressure swing distillation (column D1
and D2) is used for column sequencing. The different line types correspond to the different column
configurations.

For the exothermic vapor-liquid reaction (R1), a temperature of 80 °C has been found experi-1

mentally to be ideal for the ruthenium-based catalyst at its current state due to its required minimum2

activation energy.26 In contrast, the ideal reactor pressure still remains unknown. Experiments3

have shown that a high pressure enhances the solubility of gases into methanol and may increase4

conversion.26,33,34 However, a high reactor pressure results in high compression cost. The use of5

co-solvents with an enhanced solubility for H2 and CO2 has high potential to counteract corre-6

sponding mass transfer limitations within the reactor. However, these co-solvents also have an7
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influence on the catalytic reaction,35 which has not been investigated sufficiently so far. Therefore,1

we do not consider the use of co-solvents within our study. The combination of a high pressure and2

the presence of components with a quadrupole moment (CO2) that might influence fluid properties3

significantly makes the consideration of an accurate thermodynamic model inevitable.4
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3 Modeling1

3.1 Thermodynamic model2

Since the reactor is the central unit of the process and has a significant influence on the down-3

stream process units, we place a firm focus on the accuracy of the reactor model. As the reaction4

according to Equation (R1) requires high pressures (based on our own experiments and those from5

literature,26,33,34 a reactor pressure of 50 bar is sufficient to ensure a reasonable solubility of H26

and CO2 in the liquid), the reactor is modeled with the PCP-SAFT EOS. As the subsequent flash7

unit recycles unreacted gaseous educts potentially at high pressures (to avoid recycling of gaseous8

DMM), it has a direct influence on the reaction and is therefore also modeled with the PCP-SAFT9

EOS. For the downstream process at moderate pressures, the system is approximated as an ideal10

system (with the azeotrope between DMM and methanol being considered as a pseudo-component,11

cf. Section 3.2.1) to maintain optimization tractability while still obtaining estimates on the exergy12

demand for DMM purification. As the exergy demand for DMM purification makes up only a13

smaller part of the total energy demand,27 the resulting inaccuracies are expected to affect overall14

process performance only moderately.15

3.1.1 PCP-SAFT equation of state16

PCP-SAFT EOS is based on PC-SAFT EOS36 with additional polar terms for dipole-dipole30
17

and quadrupole-quadrupole29 interactions. For further information on the used model, we refer to18

Aigner et al.37
19

Phase equilibrium calculations using only pure component parameters (ESI Tab. S1) often de-20

liver results with significant deviations to experimental data.28 To gain reliable phase equilibria for21

multicomponent systems, conventional combining rules usually require the adjustment of interac-22

tion parameters to the binary subsystems. We consider two cases: For non associating systems, the23

binary interaction parameter ki j is used for the correction of dispersive interactions.38 In case of24

cross-associating systems, polar interactions occur involving a molecule that is either a hydrogen25
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bond acceptor or a hydrogen bond donor. This effect is modeled by the binary association strenght1

εAiB j and binary association volume κAiB j.37 These corrections lead to a significant improvement2

of phase equilibrium calculations.3

In our case, the solubility of the gaseous educts H2 and CO2 is of utter importance because4

of its significant influence on the chemical equilibrium and thus on the total process performance.5

Therefore, binary parameters are used for all binary subsystems including H2 or CO2. Parameters6

are either taken directly from literature or adjusted to vapor-liquid equilibria from literature. Since7

there is no experimental VLE-data for H2 or CO2 with DMM available in the open literature, we8

measured liquid equilibrium densities (ESI Section 2), which we used to calculate the binary in-9

teraction parameters kCO2,DMM and kH2,DMM (Tab. 1). For parameter fitting, the deviation between10

the experimental results and those generated by the PCP-SAFT EOS are evaluated by the weighted11

root-mean-square deviation RMSDw12

RMSDw(ρ) =

√√√√ 1
N

N

∑
n

(
ρcalc

eq,n−ρ
exp
eq,n

uc(ρ)i,n

)2

(1)

taking the uncertainties uc(ρ)i,n of the experimental liquid equilibrium densities ρ
exp
eq into account.13

It is noticeable that all gas solubilities were significantly underestimated without the use of binary14

parameters.15

Table 1 Binary parameters for the PCP-SAFT EOS.

Parameter source Component i Component j ki j /− εAiB j / K κAiB j /− Data Ref.

Literature CO2 Water - 2882.3 5.72967×10−4 Aigner et al. 37

Regression

CO2 Methanol - 3127.43 6.06313×10−4 Leu et al. 39

H2 Water -0.4622 - - Gillespie and Wilson 40 ,
Kling and Maurer 41 ,
DeVaney et al. 42

H2 Methanol -0.5132 - - Brunner et al. 43

Experiments CO2 DMM -0.0875 - - this work
H2 DMM -0.127 - - this work
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3.1.2 Data-driven thermodynamic model1

Given the complicated form of the PCP-SAFT EOS, it is not straightforward to consider this ther-2

modynamic model directly in deterministic global process optimization. It is not available in most3

commercial process simulation tools and complicated to rigorously implement in process mod-4

els. The multitude of terms required to describe the complex interactions between different types5

of molecules and phases introduces many variables and makes the solution of the corresponding6

system of equations challenging. Only few standalone model implementations are available in7

the open literature,44 which can however not be integrated into commercial process simulation8

tools. To still benefit from the high accuracy of the PCP-SAFT EOS for process optimization,9

we develop data-driven models for the reactor and the flash unit for gas recycling, which can effi-10

ciently be used for deterministic process optimization.45,46 The presence of both data-driven and11

mechanistic models results in a hybrid process model. With this hybrid modeling approach, we en-12

able the integration of models that are too complicated for deterministic global optimization while13

exploiting the large validity range of mechanistic models for the remaining process units.14

Flash model15

In accordance to the reported suitability of artificial neural networks47 (ANNs) for approximating16

phase equilibrium calculations for systems described by the PC-SAFT EOS,48 we use an ANN17

to model the vapor-liquid equilibrium (VLE) within the flash unit F1 considering the PCP-SAFT18

EOS. The input variables of this model are the operating conditions of the flash (TF1 and PF1)19

and the component mole fractions of the liquid reactor effluent (xProd,i). The bounds for xProd,i20

correspond to the attainable region of the reaction effluent and are summarized in Tab. 2. In21

order to yield a linear process model for the flash unit and keep the output dimension as small as22

possible, the output variables are chosen to be the split factors ξi of each component i. As the23

consideration of 6 input variables requires a large set of samples, we generate 10,000 data points24

using a mechanistic flash model implemented in Matlab incorporating the PCP-SAFT EOS.25

For deterministic global process optimization, it is crucial to keep the problem size as small as26
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Table 2 Input variables and their bounds for the training of the ANN flash model.

Input variable Description Bounds

TF1 / °C Temperature of flash F1 [25;100]
PF1 / bar Pressure of flash F1 [4;40]
xProd,H2

/ - Liquid mole fraction of component H2 in reactor effluent [0.01;0.03]
xProd,CO2

/ - Liquid mole fraction of CO2 in reactor effluent [0.05;0.11]
xProd,DMM / - Liquid mole fraction of DMM in reactor effluent [0.01;0.08]
xProd,H2O / - Liquid mole fraction of water in reactor effluent [0.03;0.14]

possible and relaxations as tight as possible in order to keep the optimization tractable. At the same1

time, accuracy requirements need to be met. To find the optimal trade-off between model accuracy2

and computational performance, sophisticated methods exist (e.g., ALAMO - Automatic Learning3

of Algebraic MOdels49). Such methods use a library of terms with a simple functional form to4

iteratively build a process or unit model until a desired accuracy is reached. The resulting models5

are tailored to fulfill the desired trade-off as good as possible. In this study, we do not intend6

to find the sweet spot of this trade-off, but rather show that deterministic global optimization for7

complex processes is also possible with off-the-shelf surrogate models. In fact, in the reduced-8

space problem formulation in MAiNGO (cf. Section 4.1), the optimization problem remains the9

same irrespective of the size of the surrogate model, i.e., the ANN, but it only affects the relaxation10

tightness and the model accuracy.45 To ensure a reasonable accuracy, we performed a sensitivity11

analysis regarding the number of hidden layers and neurons per layer. The mean squared error12

(MSE) for all cases and all settings for the training of the ANN model are summarized in Fig.13

2. For an acceptable maximum MSE of 10−4, the ANN must have at least 10 neurons in total.14

Numerical experiments have shown that the ANN with 3 layers and 4 neurons for each layer15

results in a lower solution time than ANNs with the same size but different amount of layers or16

those with an even smaller size. This indicates that the number of layers has a significant influence17

on the relaxation tightness (cf., Section 4.2). The prediction capabilities of the final ANN model18

are demonstrated in Fig. 3a-3c exemplary for the split factors of H2, CO2, and DMM.19
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Figure 2 MSE averaged over all test set data points for ANNs with a different total number of
neurons and a different number of hidden layers. For training, the Levenberg Marquardt training
function, a hyperbolic tangent transfer function, a training ratio of 70 %, a validation ratio of 15 %,
and a test ratio of 15 % was used.

Reactor model1

For the reductive synthesis of DMM from methanol, H2 and CO2, there is no reaction kinetic model2

available in the open literature. As we want to find the maximum expected process performance,3

we consider reaction equilibrium throughout this study. Although the catalytic reaction (R1) takes4

place only in the liquid phase, the VLE within the reactor influences reaction equilibrium and vice5

versa. Therefore, the conversion of methanol is dependent on the ratio of H2 to CO2 in the gaseous6

reactor feed, as well as on the ratio of gas to liquid within the reactor. However, a corresponding7

sensitivity analysis (ESI Section 3) has shown that their influence on reactor performance is low. As8

mainly the reactor performance determines how much gas need to be supplied back to the system,9

the two ratios do not affect process design and exergy demand significantly. Therefore, a fixed gas10

composition corresponding reaction stoichiometry and a molar ratio of 1:1 for the amount of gas11

within the reactor is used for the optimization. For industrial application, the catalyst is assumed to12

be immobilized and therefore not withdrawn with the liquid reactor effluent containing only DMM,13

water, and unreacted methanol, H2, and CO2. With these assumptions, only the reactor pressure14

needs to be considered as input variable for the data-driven reactor model. The output variable has15

been chosen to be methanol conversion at simultaneous phase and reaction equilibrium to yield16

linear equations for the reactor process model. As unreacted H2 and CO2 remain in the liquid17

12



(a)

(b) (c)

Figure 3 ANN prediction (surface) and PCP-SAFT training data (×) for the split factor of H2 (Fig.
3a), CO2 (Fig. 3b), and DMM (Fig. 3c) within the flash unit F1 as a function of temperature
and pressure. An ANN with 3 layers and 4 neurons each with the settings summarized in the
description of Fig. 2 is used for optimization. The plotted split factors are shown for the globally
optimal molar reactor outlet composition (H2: 0.018, CO2: 0.091, DMM: 0.070, Methanol: 0.694,
Water: 0.127).

phase at reaction equilibrium, also the K-values for these two components need to be considered1

as output variables.2

For data generation, we use the same in-house Java implementation of the PCP-SAFT EOS as3

for the flash model. As it does not allow the simultaneous consideration of chemical reactions to4

this date and convergence is sensitive to initial values in the first place, an iterative procedure for5
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calculating the combined phase and chemical equilibrium is applied in Matlab. First, the phase1

equilibrium via the PCP-SAFT EOS determines how much gas dissolves in methanol. The re-2

sulting liquid phase composition x̃Prod,i (before reaction) is then used to solve the definition of the3

equilibrium constant4

K(T ) = ∏
i∈C

(
1

x̃Prod,i

f̃i

f 0
i

xProd,i

)νi

= exp
(
−∆G0

R
RT

)
(2)

for mole fractions xProd,i (after reaction). The fugacities f̃i of each component i can be taken from5

the in-house Java implementation of the PCP-SAFT EOS, in which the standard state fugacity f 0
i6

corresponds to standard pressure. Parameter νi is the stoichiometric coefficient of component i7

according to Reaction (R1). The standard Gibbs energy is calculated by8

∆G0
R = ∑

i∈C
νiµ

0
i = ∑

i∈C
νi

(∫ T

T0

ciG
p,idT ′−T

∫ T

T0

ciG
p,i

T ′
dT ′+∆fH iG

i (T 0)−T ∆fSiG
i (T 0, p0)

)
. (3)

The ideal gas heat capacities ciG
p,i, the standard enthalpies of formation ∆fH iG

i and the standard9

molar entropies ∆fSiG
i are taken from the DIPPR 801 Database. The iterations eventually terminate10

once a threshold for the reaction extent has been reached.11

The iterative procedure makes the application of the mechanistic reactor model computation-12

ally much more demanding compared to the mechanistic flash model resulting in long computation13

times per data point. Therefore, data-driven modeling using ANNs is not suitable because of the14

high number of required samples. Instead, given the small number of attainable samples, Gaussian15

processes50 (GPs) represent a suitable alternative modeling approach. As we consider only a sin-16

gle input for the reactor model and for each of the three output variables its own GP, only a small17

set of samples is required to accurately model the behavior within the reactor. Similarly to the18

data-driven flash model, we performed a sensitivity analysis to determine the minimum complex-19

ity of the GP models to improve optimization tractability. As the GP model complexity scales with20

the number of data points, the most suitable trade-off between model accuracy and computational21

performance could be achieved with 6 data points (cf. Section 4.2). The corresponding MSEs are22
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summarized in Tab. 3. The prediction capabilities of the final GP models are demonstrated in Fig.1

4a-4c for the equilibrium methanol conversion (CMeOH) and the K-values of H2 and CO2. The2

large deviation between the simulation data calculated with the PCP-SAFT and the PC-SAFT EOS3

for these variables (Fig. 4) highlights the importance of the correct choice of the thermodynamic4

model for the reactor model.5

Table 3 MSE for the GP models for CMeOH, KH2
, and KCO2

for a different number of considered
training data points and the matern kernel with parameter 3/2 as the covariance function. The
MSE corresponds to the test set only. The base case model is highlighted in gray.

GP data points
4 6 8 10 12

MSECMeOH / 10−10 140 6.5 1.1 0.5 0.6
MSEKH2

/ - 0.707 0.039 0.029 0.019 0.010
MSEKCO2

/ 10−4 50 2.95 1.89 1.13 0.62

3.2 Process model6

For the remaining process units, the consideration of a simpler thermodynamic model is justified7

as either only moderate operating pressures are considered or H2 and CO2 have already been8

separated. Furthermore, the remaining process units provide only approximate estimates for the9

exergy demand for compression and product purification, for which simple models are sufficient10

as they are expected to make up only a smaller share of the overall exergy demand.27
11

3.2.1 Distillation column sequencing using superstructure optimization12

As the optimal distillation column sequence is generally dependent on the upstream process, a13

fixed sequence could lead to a suboptimal process design and operating conditions. Therefore, we14

consider superstructure optimization, which calculates the optimal distillation column sequence15

based on the optimal operating conditions of the upstream process. We consider only distillation16

columns D1-D3 for superstructure optimization as CO2 should be separated first to minimize the17

need for low-temperature distillation (cf. Fig. 1). This results in only two possible sequences,18
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(a)

(b) (c)

Figure 4 GP prediction (black line) and PCP-SAFT training data (×) for the K-values of H2 (Fig.
4a) and CO2 (Fig. 4b), and methanol equilibrium conversion CMeOH (Fig. 4c) for the reactor unit
as a function of pressure. The red plus markers (+) represent the PCP-SAFT test data used
to calculate the MSE reported in Tab. 3 to demonstrate the validity of the GP model between
training samples. The orange diamonds (♦) correspond to the PC-SAFT EOS and demonstrate
the deviation between PC-SAFT and PCP-SAFT EOS for the underlying system.

which we could have simply considered as two separate nonlinear programs (NLP). We neverthe-1

less formulate the separation process as a superstructure and demonstrate that solving the MINLP2

is cheaper than enumerating the two options as NLPs.3

In this study, we use the state-equipment network51 (SEN) superstructure representation, in4
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which we assign all separation tasks that have a cut between the same components to the same1

distillation column (separation cut SEN).52,53 In contrast to the state-task network, this represen-2

tation requires the smallest number of distillation column models, while keeping model equations3

comparatively simple.4

For the separation cut SEN, the connection between columns can be fully described by two5

types of binary variables. Variable XF
d indicates whether column d is connected to the global feed6

(i.e., the bottom product of column D0) to the superstructure. Variable X s
l, j indicates whether the7

output stream s (distillate or bottom) of column l is connected to column j. In this work, the8

following equations are used to describe the connection between the distillation columns:9

XB
2,3 +XD

3,2 = 1 (4)

XF
3 = XD

3,2 (5)

XF
2 = XB

2,3. (6)

Note that the distillate stream of column 1 is always fed to column 2 and the distillate stream from10

column 2 is always fed to column 1, regardless of the selected sequence (Fig. 1). To determine11

the feed flow rates to a column, all flow rates that can be fed to a column are multiplied by the12

corresponding binary variable to ensure that only the flow rates of the active connections are used13

(cf. Direct MINLP problem formulation in Burre et al. 54). For example, the feed of component i14

to column 2 is given by15

F2,i = D1,i +XF
2 Fi +XD

3,2 D3,i , (7)

where Fi is the global feed of component i and Dd,i is the distillate flow rate of component i in16

column d.17
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For the distillation column models, the Underwood equations55 are used. In order to apply1

the Underwood method to the azeotropic mixture considered in this work, the coordinate transfor-2

mation presented by Liu et al. 56 is used. In their method, the azeotropic system is divided into3

subsystems which behave approximately like a non-azeotropic mixture. Within this transforma-4

tion, the azeotropes are treated as pseudo-components. In this work, the subsystems are modeled5

as ideal mixtures and the vapor pressures of the pure components are determined using the ex-6

tended Antoine equation. To determine the vapor pressures of the azeotropic pseudo-components,7

the Antoine parameters are fitted using data from flash calculations in Aspen Plus.8

3.2.2 Miscellaneous models9

The remaining units are modeled using simple process models to get an estimate on exergy demand10

while maintaining optimization tractability. For gas compression, we use a one-stage compressor11

model to keep the amount of optimization variables small and consider an isentropic and mechan-12

ical efficiency of 80 % and 90 %, respectively. This provides a rather conservative estimate, as the13

model overestimates the actual exergy demand slightly. In Section 4.2, we evaluate whether this14

simplification is reasonable. For the pumps, an isentropic efficiency of 90 % is considered. For the15

heat exchanger, we use the logarithmic mean temperature difference to approximate the thermody-16

namic mean temperature, which we use to compute exergy demand and excess. Heat integration17

is only approximated in the objective function by the simple summation of exergy demand and18

excess within the entire system. All parameters for the pure component property models (extended19

Antoine for vapor pressure, DIPPR-106 for heat of vaporization, DIPPR-107 for heat capacity) are20

taken from the Aspen Plus DB-PURE37 data base and for the Henry’s constant correlation for H221

and CO2 from the APV110 HENRY-AP and BINARY data bases.22
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4 Global optimization1

Most process models introduced in Section 3 are nonlinear. In addition to the nonconvex terms2

of the pure component property models, the hyperbolic tangent activation function applied in the3

ANN model as well as the covariance function of the GP model introduce nonconvexities into the4

process model. Also the Underwood equations for modeling the distillation columns within the5

superstructure and the corresponding discrete decisions therein are responsible for further noncon-6

vex terms. Irrespective of the considered process models, the structure of the process itself with its7

recycle streams makes the resulting optimization problem nonconvex. To find the most promising8

process structure and operating conditions for reductive DMM production despite its nonconvex9

nature, global optimization is desirable.10

The application of global optimization to large optimization problems is however challenging.11

Particularly, problems incorporating data-driven submodels usually exhibit a large number of op-12

timization variables, which often makes the optimization problem not tractable for state-of-the-art13

deterministic global solvers. To still solve such problems to global optimality, our open-source de-14

terministic global solver MAiNGO32 effectively exploits the smaller problem size of the so-called15

reduced-space problem formulation,57 in which the only optimization variables are the degrees16

of freedom and tear variables. By additionally considering tailored relaxations for the noncon-17

vex terms of the process model, processes incorporating hybrid models could already be solved18

efficiently to global optimality.45,46
19

4.1 Problem formulation and objective function20

The process model introduced in Section 3 is implemented in the programming language C++, in21

which all intermediate process variables are calculated as functions of the degrees of freedom, tear22

variables, and a few additional optimization variables (to avoid model equations yielding weak23

relaxations58). The degrees of freedom for the DMM production process depicted in Fig. 1 are24

the reactor pressure (PR1), the temperature (TF1) and pressure (PF1) of the flash unit for gas recy-25

19



cling, the binary decision variable for the choice of the optimal distillation sequence (XB
2,3), as well1

as the recoveries of the light and heavy key component (γLK,d and γHK,d , respectively) of distil-2

lation columns D1 - D3 (Tab. 5). As column D0 is not part of the superstructure and separates3

pure CO2 from the remaining liquid mixture, γLK,0 and γHK,0 are fixed to 1 and 0, respectively.4

Tear variables are introduced for each recycle stream and for process units that otherwise would5

need to be modeled by implicit functions.57 The elimination of optimization variables using the6

model equality constraints (i.e., the reduced-space formulation in MAiNGO) results in a dramatic7

reduction in problem size. The resulting process model contains only 41 optimization variables,8

one of which is binary. It has 55 inequality and 31 equality constraints (Tab. 4). To facilitate the9

modeling procedure and benefit from tailored relaxations, we use the model libraries implemented10

in MAiNGO (e.g., enthalpy of vaporization, ideal gas enthalpy)59 and MeLOn.45,46 The model11

library MeLOn provides several machine learning models including ANNs and GPs, which are12

accessed by MAiNGO via a build-in interface. Corresponding model parameters from the training13

in Matlab are provided by an automatically generated csv- (ANN) or json-file (GP). Relaxations14

of all functions and their subgradients are automatically obtained from the MC++ library.60
15

The objective function of the optimization problem is the minimization of the net exergy de-16

mand17

Ėtotal = ṅH2
êH2

+ ṅMeOH êMeOH + ∑
c∈C

Wc + ∑
p∈P

Wp + ∑
h∈H

ĖQin,h + ∑
d∈D

ĖQreb,d

− ∑
h∈H

ĖQout,h− ∑
d∈D

ĖQcond,d − ĖQR1,out ,

(8)

where ṅH2
and ṅMeOH is the net consumption of raw materials H2 and methanol, respectively, êH2

18

and êMeOH is their molar exergy, Wc is the power input of compressor c ∈ C, Wp is the power19

input of pump p ∈ P, ĖQin,h and ĖQout,h is the exergy flow of the heat demand and excess for heat20

exchanger h ∈ H and flash F1, ĖQreb,d and ĖQcond,d is the exergy flow of reboiler and condenser21

duties of distillation column d ∈D, and ĖQR1,out is the exergy flow of excess heat from the reaction.22

The ambient temperature is assumed to be 25 °C to calculate the exergy flows.23
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The corresponding process model that can be given directly to the deterministic global solver1

MAiNGO is available as electronic supplement.2

4.2 Results and discussion3

The deterministic global solver MAiNGO32 v0.5.0.2 employs a spatial branch-and-bound algo-4

rithm with several bound tightening techniques and uses the multivariate McCormick method61,62
5

implemented in MC++60 to obtain relaxations. The optimization is carried out with the parallel6

version of MAiNGO on an Intel Xeon Platinum 8160 processor using 40 cores. Both the relative7

and absolute optimality tolerance is set to 10−3. To improve convergence, we use the following8

non-default settings in MAiNGO: First, we utilize a combination of an adaptation of the Kelley’s9

algorithm63 and a n-simplex algorithm to linearize relaxations instead of utilizing a midpoint lin-10

earization. Second, we selectively consider auxiliary variables (AVs) for repeated nonlinear terms11

to improve the tightness of the relaxations.58 With this, the base case optimization problem con-12

siders Kelley’s and n-simplex relaxation linearization, 84 AVs, 6 GP data points, and 3 layers and13

4 neurons each layer. All characteristics of the optimization problem are summarized in Tab. 4.14

The consideration of a special linearization strategy for relaxations reduces the number of nodes15

required for convergence significantly but in turn increases solution time per node. The consider-16

ation of AVs is key for convergence in the first place (Tab. 4 and Fig. 5). As MAiNGO treats17

the process model in the reduced-space as one function being dependent only on the degrees of18

freedom, tear variables, and a few additional optimization variables (cf. Section 4.1), the model19

relaxation is constructed from a sequence of mathematical operations (cf. McCormick method),61
20

which results from the procedural concatenation of explicit model equations implemented in the21

C++ code. Within this sequence of mathematical operations some individual terms may appear22

repeatedly, which could weaken model relaxations.62 To prevent this and still yield tight relax-23

ations for the optimization in the reduced-space, we add certain selected AVs to benefit from both24

the reduced problem size and potentially tight relaxations from the auxiliary variable method64,65
25

(AVM) typically employed by most state-of-the-art deterministic global solvers.66,67
26
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Table 4 Problem size and numerical results for different objective functions, solver settings, and
model detail. For all considered cases, the global optimal solution was found in the root node.

Objective function min Ėtotal maxηEx

Solver settings / model detail Base
case

Midpoint
linearization

No AVs GP w 8
data points

ANN w
5 neurons

Base
case

Number of
Continuous variables 40 40 40 40 40 40
Discrete variables 1 1 1 1 1 1
Equality constraints 31 31 31 31 31 31
Inequality constraints 55 55 55 55 55 55
B&B nodes 2715 225887 456000a 45000a 37200a 38500a

Optimal objective value / MJ kg−1 27.4 27.4 27.4a 27.4a 27.5a 91.9 %a

Lower bound of root node / MJ kg−1 -16 -2.2 ×109 -3.5 ×1011 -16 -61.3 -4.1 ×108

CPU time per B&B node / s 7.7 0.4 0.6 6.4 7.7 7.5
Total CPU time / h 5.8 27.6 80a 80a 80a 80a

Rel. optimality gap / % 0 0 9.0 ×107 0.8 0.5 1.6
a Optimization has reached the CPU limit of 80 CPUh.

The base case optimization problem is solved to global optimality in 5.8 CPUh or 2715 nodes1

(Tab. 4 and Fig. 5). The global solution is 2.08 MJmol−1 or 27.4 MJkg−1 net exergy demand per2

produced DMM, which corresponds to an exergy efficiency of 91.9 %. At the optimal operating3

conditions, a maximum reactor pressure of 120 bar is applied (Tab. 5) resulting in an equilibrium4

methanol conversion of 15.4 %. As the pressure variable is at its upper bound, an even higher pres-5

sure could result in an even better performance but also requires a more complex reactor design.6

With the one-stage compressor model, compression accounts for only 4 % of the total exergy de-7

mand, which would decrease even further if a multi-stage compressor model would be considered.8

As the optimal operating pressure is already at its upper bound, a multi-stage compressor model9

would not influence the optimal operating conditions. For a detailed process design at a later stage10

of development, however, a multi-stage compressor model should be considered.11

On the modeling level, the choice of the objective function also has a significant influence on12

the optimization. Instead of minimizing net exergy demand (cf. Equation (8)), maximizing exergy13

efficiency14

ηEx =
ṅDMM êDMM +∑h∈H ĖQout,h +∑d∈D ĖQcond,d + ĖQR1,out

ṅH2
êH2

+ ṅMeOH êMeOH +∑c∈C Wc +∑p∈PWp +∑h∈H ĖQin,h +∑d∈D ĖQreb,d

, (9)
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the optimization does not converge within 80 CPUh (optimality gap of 1.6 %, Tab. 4). Also the1

complexity of each process model must be kept moderate to yield tight relaxations. Considering 82

instead of 6 data points for the Gaussian process reactor model, an optimality gap of 0.8 % remains.3

Considering 5 instead of 4 neurons for each of the 3 layers for the flash model, an optimality4

gap of 0.5 % remains (Tab. 4). If the two individual NLPs are solved, the total solution time5

(30.1 CPUh) exceeds that of the base case MINLP problem incorporating the superstructure model6

for distillation column sequencing significantly. This shows that a superstructure representation7

(SEN, cf. Section 3.2.1) together with a problem formulation (Direct MINLP54 in a reduced-8

space) that both do not introduce many additional variables (here, only the binary variable XB
2,3)9

are promising for deterministic global optimization.10
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Figure 5 Convergence indicated by the ratio of the lower bound to the upper bound during the
course of optimization for all considered cases. As the lower bound for the case without the
consideration of AVs is low and does not increase within the course of optimization, it is not
displayed in this diagram.

The flash unit operates at 4 bar and 42.0 °C to recycle 99.6 % H2 and 77.6 % CO2. The rest of11

the CO2 is separated by the low-temperature distillation column D0, before DMM can be purified12

in the subsequent distillation column sequence. The optimal sequence is obtained for XB
2,3 = 1,13

where column D2 first separates the azeotrope between methanol and DMM from the bottom14
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Table 5 Degrees of freedom for the reductive DMM production process (Fig. 1), their interval
bounds and optimal values.

Degree of freedom Description Bounds Optimal value

PR1 / bar Pressure of reactor R1 [50, 120] 120
TF1 / °C Temperature of flash F1 [25, 90] 42.0
PF1 / bar Pressure of flash F1 [4, 10] 4
XB

2,3 / - Decision variable for connecting column D2
with D3 via the bottom product

{0, 1} 1

γLK,1 / - Recovery of the LK component of column D1 [0, 1] 1
γHK,1 / - Recovery of the HK component of column D1 [0, 1] 0
γLK,2 / - Recovery of the LK component of column D2 [0, 1] 1
γHK,2 / - Recovery of the HK component of column D2 [0, 1] 0
γLK,3 / - Recovery of the LK component of column D3 [0, 1] 1
γHK,3 / - Recovery of the HK component of column D3 [0, 1] 0.05

product of column D0. Then, DMM is separated from methanol in the pressure swing distillation1

comprising column D2 and D3 leading to a total share of exergy demand for separation of about2

9.6 % of that for the entire process. This is in good agreement with values from literature (7 %5
3

and 8 %27, both decoupled from the upstream methanol process). However, the exergy demand4

for separation reported by Burre et al. 27 corresponds to a reactor pressure of 80 bar, for which a5

methanol conversion of 15.7 % was estimated using the NRTL thermodynamic model—the most6

suitable one to this date. Our calculations with the more accurate PCP-SAFT EOS show that this7

conversion can only be reached at even higher pressures.8

The results show that the correct choice of the thermodynamic model for the reactor is crucial9

for process design and evaluation. To evaluate the accuracy of the simple Underwood model for10

distillation, we compare corresponding results with those obtained from a tray-to-tray model and11

the NRTL thermodynamic model (accurate for moderate pressures) in Aspen Plus. The results12

show that the total exergy demand is overestimated by the Underwood model only slightly by13

about 10 % (Tab. 6). The estimates for the individual distillation columns are, however, partly14

inaccurate for the Underwood model for this nonideal system. Although these inaccuracies do15

not have a significant influence on the overall performance of the process, it certainly has for a16

more detailed process design at a later stage of development. Therefore, more research should17
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be dedicated to the development of more accurate distillation models suitable for global flowsheet1

optimization.2

Table 6 Comparison of the reboiler exergy demand for distillation column D0-D3 calculated with
the Underwood model and the tray-to-tray model using the NRTL thermodynamic model in Aspen
Plus (RadFrac).

Distillation column Exergy demand / MJkg−1

Underwood (this study) Tray-to-tray (Aspen Plus)

D0 0.23 0.24
D1 0.65 0.11
D2 0.23 0.25
D3 1.14 1.41

Total 2.25 2.01

25



5 Conclusion1

The direct reduction of CO2 belongs to the most hydrogen-efficient pathways for dimethoxymethane2

(DMM) production given its favorable reaction stoichiometry. Its need for a high reactor pressure3

makes the application of thermodynamic models available in the open literature however inaccu-4

rate, which has limited process design to the development of simple process models so far.5

To enable reliable process design and ultimately advance efficient DMM production, we mea-6

sured liquid equilibrium densities and fitted binary parameters for the PCP-SAFT equation of state7

(EOS) for the components involved in the reaction. Whereas this thermodynamic model was found8

to predict the vapor-liquid equilibrium of the system properly, it constitutes a major challenge for9

deterministic global optimization for process design. To benefit from both the high accuracy of the10

thermodynamic model and the potential of deterministic optimization, we developed data-driven11

thermodynamic models for process units that potentially operate at high pressures and contain sig-12

nificant amounts of H2 and CO2. The equilibrium-based reactor model is therefore approximated13

by Gaussian processes, while the flash unit for gas recycling is approximated by an artificial neu-14

ral network. In combination with a superstructure model for distillation column sequencing and15

several recycling streams within the process, the resulting mathematical program is nonconvex.16

To still find the most favorable process design and operating conditions, we used our open-source17

deterministic global solver MAiNGO for optimization.18

The capability of MAiNGO to exploit the small problem size of the so-called reduced-space19

problem formulation makes the optimization converge to the global optimum in 5.8 CPUh. To20

achieve this performance, several measures had to be taken: On the algorithm level, a combi-21

nation of Kelley’s and a n-simplex algorithm for linearize relaxations, as well as a hybrid of the22

McCormick and the auxiliary variable method had to be used. On the modeling level, a suitable23

trade-off between model complexity (regarding the data-driven models) and computational perfor-24

mance for global optimization had to be found. The resulting process performance for reductive25

DMM production from methanol, H2, and CO2 was found to be 91.9 % at an optimal reactor pres-26

sure of 120 bar. As only simple Underwood models were used for the distillation columns within27
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the superstructure, which have been found to succumb significant inaccuracies for the underlying1

system, future work should focus on the development of distillation models that are suitable for2

global optimization. To increase methanol conversion and decrease the exergy demand for separa-3

tion, co-solvents could be considered to either enhance gas solubility or enable in-situ extraction4

of DMM from the reaction phase. In this regard, data on the phase equilibrium of reaction mix-5

tures including different co-solvents and on their suitability for the ruthenium-catalyzed reaction6

would be beneficial. This data could be used to fit PCP-SAFT EOS parameters for a variety of7

multi-phase systems. Such parameters would then enable an optimization-based screening of co-8

solvents, which potentially increase reaction equilibrium and decrease energy demand for DMM9

purification.10
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