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Abstract

Shares of renewable energy are rapidly increasing in many countries due to emissions poli-

cies and declining prices. Investment planning for future renewable deployment often relies

on optimization models. Memory usage and solving time restrict these models, leading to

tradeoffs in the treatment of temporal complexity, spatial complexity, and physical repre-

sentation. A common approach is to reduce the temporal complexity of models. Reducing

temporal complexity is often achieved by using time-series aggregating and modelling rep-

resentative periods instead of a complete time series. But the impacts of such approaches

are still poorly understood, especially for very low emissions systems with high shares of

variable renewable energies. In this paper, the impacts of using time-series aggregation

methods on optimal system design are investigated. It is found that the negative impact of

time-series aggregation increases for lower emissions. It is also identified that modelling wind

time-series data with representative days introduces this negative impact primarily and that

representing wind time-series data with representative days decreases the reliability of supply

defined as unserved load (0.05% to 18.0%), introduces a bias in installed capacity (-31.15%

to +12.2%), and underestimates total system cost (2.5% to 44.9%). These effects are largest

in cases with the strongest emission constraints. When designing low emissions systems

with a high share of variable renewable energies, it is recommended not to use time-series
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aggregation to create representative days for wind power output. This paper contributes an

Open Source analysis framework containing time-series aggregation and capacity expansion

that should be applied when testing future time-series aggregation methods to reduce the

identified negative impacts.

Keywords: energy system, optimization, linear programming, time-series aggregation,

emission reduction

1. Introduction

To meet the low-carbon emissions goals of the Paris Agreement [1], today’s energy sys-

tems – with significant greenhouse gas emissions – need to be transformed into future energy

systems with no net or even negative carbon dioxide emissions. Capacity expansion planning

(CEP) is an important tool for policy and investment decisions for future energy systems

[2]. CEP models represent the investment and operation of a future energy system to de-

termine the optimal installation plan, including decisions on technology mix, location, and

investment timing for generation, storage, and transmission capacities [3].

The representation of relevant physical, spatial, and temporal complexities in CEPs

is often highly simplified [4] to make a CEP solvable with state-of-the-art computational

hardware. For example, the temporal complexity is often reduced by using time-series

aggregation to create “typical” periods such as representative days [5].

Time-series aggregation in CEP models has been applied to create representative time

series for demand: Dominguez-Munoz et al. use representative demand days [6]. Fazlollahi

et al. use representative demand periods with varying lengths in the first step and segment

the representative periods into a few consecutive time-steps in a second step [7]. Schütz et

al. use different aggregation methods to generate representative demand days [8]. Gabrielli

et al. [9] aggregate electricity prices to representative days [10]. Nahmacher et al. [11]
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(André Bardow), abrandt@stanford.edu (Adam R. Brandt)

Preprint submitted to Energy January 17, 2023



extent the approach of representative periods from demand to also include energy availabil-

ity. Pfenninger et al. [12] use representative periods for the energy availability from wind

and solar and highlight the inter-annual variability of multiple year weather data. Multiple

methods have been devised to perform time-series aggregation [5] and have been compared

with each other: Schütz et al. [8] compare different methods to select representative demand

days. Pfenninger [12] compares methods to create representative periods, including combi-

nations of downsampling, k-means, hierarchical, and extreme period selection approaches.

Teichgraeber et al. [13] compare hierarchical, k-means, k-medoids, DBA, and k-shape clus-

tering algorithms [14]. All of these methods group periods of the original time-series – like

days – into a smaller number of representative periods.

Time-series aggregation methods have been applied widely to different energy system

models. First, Time-series aggregation methods have been used for national energy systems:

Nahmacher et al. [11] applied it to a European scale energy system. Pfenninger [12],

Zeyringer et al. [15], Green et al. [16], and Heuberger et al. [17] model Great Britain. Munoz

et al. [18] model the Western Electricity Coordinating Council in the US. Blanford et al. [19]

model the US. Baumgärtner et al. [20] model the German energy system. Second, time-series

aggregation is used to model regional energy systems: Lara et al. [21] and Merrick et al. [22]

model in the Electric Reliability Council of Texas region. Pina et al. [23] model Sao Miguel,

a Portuguese island. Third, time-series aggregation methods are used for district energy

systems: Fazlollahi et al. [7] model two separate small district models to supply heating and

electricity demand. Gabrielli et al. [9] and Kotzur et al. [14] model district energy systems

that supply heating and electricity demand in one model. Fourth, Schütz et al. [24] and

Kotzur et al. [14] use time-series aggregation to model residential energy systems. Fifth,

time-series aggregation is used for industrial energy supply systems: Dominguez-Munoz et

al. [6] and Kotzur et al. [14] model combined heat and power industrial energy systems.

Bahl et al. [10] model an energy system with heating, cooling, and electricity demand.

Brodrick et al. [25] model an energy system and combe a solar thermal, gas-fired, and CO2

capture system. Broderick et al. [26] model an integrated solar combined cycle. Schilling et

al. [27] design an organic rankine cycle. Teichgraeber et al. [28] model a oxyfuel natural gas
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plant. Baumgärtner et al. [29] model a industrial synthesis problem. Yokoyama et al. [30]

model an energy system with electricity, cold water, and steam demand. Some models are

formulated as dispatch problems, which optimize the detailed operation of a given energy

system as applied by Green et al. [16] and Brodrick et al. [26]. Other models are formulated

as capacity expansion planning problems, which optimize the energy system design while

modelling the operation like Nahmacher et al. [11], Pfenninger et al. [12], and Kotzur et al.

[14], or Baumgärtner et al. [20] do.

Accurate time-series aggregation would reduce model complexity while generating sim-

ilar optimization outcomes to those that would have been obtained if aggregation was not

applied. One can measure the accuracy of the optimization outcome in a reduced complexity

model in objective function value, energy system design, and system constraint violations

[31]. For complex optimization problems that are used for policy and decision making, it

is often not possible to solve a reference scenario with the full time-series, and only lower

and upper bounds can be calculated for some of those models [32]. In the literature, there

has been an effort to examine the effects of aggregation on simplified models: Teichgraeber

and Brandt [13] use an energy storage and gas turbine generation problem and find that

centroid-based clustering methods represent the operational part of the optimization prob-

lem more accurately. Kotzur et al. [14] use an industrial, residential, and island energy

system and recommend a hierarchical clustering algorithm and that the impact of applying

time-series aggregation must be evaluated for each energy system. Pfenninger et al. [12] use

a zonal model of Great Britain, find a significant interannual variability of temporal input

data depending on the weather year, and recommend the usage of more than one year in

the capacity expansion planning. Göke et al. [33] use a zonal model of Germany, find that

time-series aggregation should be applied with caution, and recommend including extreme

periods, varying temporal resolutions or portioning the problems in smaller parts. Simplified

models bring the advantage that the optimization output of a scenario with time-series ag-

gregation can be compared to the optimization output of a reference scenario where the full

time-series is used to evaluate the error introduced by time-series aggregation [13]. Studies

show that time-series aggregation impact on design decision is stronger for systems with
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lower emissions standards [12]. Göke et al. [33] conclude that time-series aggregation is

not adequate for designing energy systems with high shares of renewable energy systems. A

possible overestimation of electricity produced from wind is shown by Pina et al. [23] when

down-sampling is used to reduce the number of time periods per modelled day. However,

Poncelet et al. [34] show that increasing the number of time periods per modelled day has

a smaller effect on the error of the residual load duration curve than using other methods

to aggregate the time series. In the literature, distance measures are used to determine the

quality of the clustering comparing the clustering result to the original input data.

Despite the rise in importance of time-series aggregation in recent years, the impacts

of time series aggregation on emission constraints and reliability of supply for low-carbon

emission systems have not been thoroughly analyzed.

In this work, the impacts of time series aggregation on costs, design decisions, emission

constraints, and reliability of supply are analyzed. Compared to existing literature, it is

identified why time-series aggregation performs so poorly on low emissions systems with

a high share of variable renewable energies. The aggregation of only some attributes is

introduced to analyze the source of the error. It is investigated whether 1) adding single

day extreme, 2) increasing the number of representative periods, 3) using a medoid instead

of a centroid clustering representation, or 4) giving certain attributes more importance in

the aggregation process improves optimization outcome. A time-series aggregation analysis

framework is provided. The framework uses some case data for two different countries and

models the same countries with different numbers of regions.

2. National energy models and time-series aggregation

The electric energy systems of California (CA) and Germany (GER) are modelled, two

areas of leading renewable penetration. The geographies of the two electric energy systems

are both represented as single- and multiple-node systems, with 10 nodes in CA and 18

nodes in GER. Hourly data from multiple years are used: 2014 to 2017 for CA and 2010 to

2016 for GER, all-inclusive. The time-series data is only available in an hourly resolution

across the studied regions and years, limiting the studied temporal granularity.
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The temporal input data is split into single years, which are called “full time-series”.

Three scenarios are distinguished: a) A reference scenario (R), which uses the full time-

series for the energy system design and operation. b) A design scenario (Dk), which uses

k aggregated time series for the energy system design. c) A design & operation scenario

(Dk&Oall), which uses a two-stage approach to design and test the energy system. In the

two-stage approach, k aggregated representative time series are used first to generate opti-

mal system designs for various CEP models. To measure the resulting system infeasibility,

the unmet demand (“lost load”) and emissions exceeding the emission constraint (“excess

emissions”) are then calculated in a second stage operational optimization that uses the

full temporal data set and has perfect foresight. This second stage operates and tests the

energy system design resulting from the first stage (with time-series aggregation) against the

original full data set (without time-series aggregation), somewhat akin to “stress testing”

the reduced-form model with real-world, non-aggregated data.

A hierarchical clustering algorithm is used because it is deterministic, in contrast to k-

means. Within the study, different cases are investigated, and the base case uses a centroid

representation for the cluster centres, the same attribute weights for all time-series, and

no extreme value selection. First, the time-series aggregation methods used are explained,

second, the capacity expansion model is introduced, and third, the scenarios that combine

time-series aggregation and capacity expansion model are introduced.

2.1. Time-series aggregation

A mean-preserving time-series aggregation method to represent all original periods of

a time-series with fewer representative periods is applied (Figure 1). It is referred to Te-

ichgraeber and Brandt [13] for a framework describing clustering methods for time-series

aggregation methods applied to CEP. The julia implementation “TimeSeriesClustering.jl”

[35] is used in this paper. The time-series aggregation method consists of the following steps:

1. Splitting and reshaping of the original time-series, which is a data preparation step

that brings the data in the necessary format.
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2. Normalization, which ensures the same scale for all attributes, e.g. demand has the

unit MW and availability is a factor between 0 and 1.

3. Optional: Extreme period selection, which selects periods with particular low wind

availability, low solar availability, or high demand and adds them to the representative

periods.

4. Hierarchical clustering with Euclidean distance measure and representation of each

cluster, which reduces the number of periods to a few representative periods.

5. Denormalization of the selected extreme periods and clustered periods.

A hierarchical clustering algorithm is chosen over a partitional clustering algorithm to en-

sure reproducibility: Partitional clustering algorithms use a random initial distribution of

starting points. In initial experiments, it is found that even selecting the best result from

10,000 partitional clustering runs is not sufficient to ensure the exact reproducibility of the

results. Hierarchical clustering algorithms yield reproducible results. The initial analysis

has shown that the qualitative statements of this paper are the same for partitional and

hierarchical clustering algorithms. That partitional and hierarchical clustering algorithms

lead to structurally similar results is also in accordance with the findings of Teichgraeber

and Brandt [13], Kotzur et al. [14], Schütz et al. [8], and Liu et al. [36]. Teichgraeber

and Brandt [13] observe the similar performance of hierarchical and k-means clustering al-

gorithms. Only k-medioid appears less predictable than the others. Kotzur et al. [14] also

recommend hierarchical algorithm as the choice of aggregation method k-medoid or hier-

archical has a small influence, and a hierarchical aggregation can be reproduced and has a

lower computation effort.

Li et al. [37] use the Davies-Bouldin index to measure the clustering quality and deter-

mine the number of representative periods. The Euclidean distance, which is a specific form

of the Davies-Bouldin index, is common in literature [13] and can be used to determine the

numerical quality of the clustered input data generated via the data reduction algorithm.

However, the numerical quality of the input data preparation is not equivalent to the qual-

ity of the optimization result. Prior work has shown that reduced clustering error does not
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Figure 1: First, the original time-series data is split and reshaped to the necessary format. Second, the

original periods are normalized, ensuring the same sale for all attributes. Third, extreme periods are

optionally selected. Fourth, the remaining periods are clustered. Fifth, the extreme and clustered periods

are denormalized to the representative periods used in the optimization.

always result in reduced optimization error relative to the optimization solution with no clus-

tering. We, therefore, do not determine the required number of representative periods based

on the numerical quality of the input data preparation using the Davies-Bouldin index but

instead investigate how sensitive the quality of the result is to the number of representative

periods.

First, the regular aggregation (used by Teichgraeber and Brandt [13]) is described, sec-

ond, attribute weighting is introduced, and third extreme period selection is explained.

2.1.1. Regular aggregation

The full time-series is shaped into a matrix (rows are features and columns are periods,

Figure 2) to find similarities between the different original days, which are used as the

original periods. A single column contains all time-step values of one period, called time

period, for each attribute and each region. A z-normalization is applied on the values of

each attribute and region to achieve comparable scales between different attributes, which

may have different units. The values of each attribute and region are transformed to have a

mean of zero and standard deviation of one to allow comparison across different attributes

and regions:

P̂a,n =
1

σa,n

(Pa,n − µa,n) (1)
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Figure 2: The original time-series is reorganized in a matrix to apply the clustering. Every single row is one

feature, which is compared across the different periods k in the following clustering process. Each column

is another period like e.g. another day. All time-series input data of one day is represented in a single

column. An exemplary column is highlighted. The exemplary column contains multiple features, which are

the time-step t values for each attribute a and region n of this day. The attribute “demand” is coloured in

red, and the attribute “wind” is coloured in blue. Both attributes exist in the region “west” and “east”.
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where P̂a,n is the normalized value for an attribute a and region n, Pa,n is the original

value, µa,n is the mean of the attribute and region, and σa,n is the standard deviation of the

attribute and region.

A hierarchical clustering method is used to assign the normalized, original periods to

fewer cluster groups. The hierarchical clustering method minimizes a distance measure

between the aggregated and the full time-series. A Euclidean distance measure ED(x, y) is

used. The Euclidean distance quantifies the dissimilarity of two periods and is common in

literature [13]. Euclidean distance ED(x, y) compares each hourly time-step value xa,n,t of

one day with the hourly time-step value ya,n,t of another day:

dist(x⃗, y⃗) = ED(x⃗, y⃗) =

√∑
a∈a

∑
n∈n

∑
t∈t

(xa,n,t − ya,n,t)2 (2)

where t is the set of all time steps t within a period, a is the set of all attributes a, and

n is the set of all regions n. The differences between each pair of hourly time-step values

are hereby weighted the same. The Euclidean distance measure is used in the iterative

hierarchical clustering using Ward’s algorithm [38]. The hierarchical clustering algorithm

is initialized with a single cluster for each original period, which leads to N cluster sets

Ck k ∈ 1, 2, ..., N . In an iterative loop, the two clusters are merged so that the merging

minimizes the Euclidean distance ED measure between the centres of each cluster z⃗k and

the points of each cluster p⃗i ∀i ∈ Ck [13] [14]:

c⃗k = argmin
z

∑
i∈Ck

ED(p⃗i, z⃗)
2. (3)

Each iteration reduces the total number of cluster sets by 1, and the iterative loop is repeated

until the desired number of cluster sets is achieved Ck k ∈ 1, 2, ..., K.

The cluster centers z⃗k are calculated as the arithmetic mean of all points within the

cluster set Ck:

z⃗k = p⃗i ∀i ∈ Ck (4)

where p⃗i are the different points and Ck the set of points within cluster k.

A cluster is either respresented by its centroid or by its medoid [13]. The centroid

representation uses the arithmetic centre of the cluster z⃗k for the representation. The medoid
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representation uses a real period, which is the one closest to the arithmetic centre. A

rescaling of the medoid is applied to preserve the original mean [11].

To reverse the normalization after obtaining the normalized representation Êa,n by clus-

tering, a denormalization step is applied:

Ea,n = σa,n · Êa,n + µa,n (5)

where Ea,n is the representative period in the original unit.

2.1.2. Attribute weighting

Within this paper, it is investigated whether giving certain attributes more importance

in the aggregation process improves optimization outcomes. Therefore a new weighted

Euclidean distance measure is introduced, and the application, which varies the importance

of certain attributes in the aggregation process, is called attribute weighting: The Euclidean

distance measure (2) is expanded by attribute weights wa to investigate their influence. A

higher attribute weight for one attribute such as e.g. wind (wwind) in comparison to the

others means a higher influence of this attributes distance (dist(x⃗wind, y⃗wind)) on the total

distance (distWED(x⃗, y⃗)). Accordingly, a lower attribute weight for one attribute means a

lower influence of this attributes distance on the total distance. Each value xa,n,t and ya,n,t

is multiplied by an attribute weight wa in the weighted Euclidean distance:

distWED(x⃗, y⃗) = WED(x⃗, y⃗) =

√∑
a∈a

∑
n∈n

∑
t∈t

(wa · xa,n,t − wa · ya,n,t)2 (6)

The weighted Euclidean distance 6 is used in the hierarchical clustering algorithm:

c⃗k = argmin
z

∑
i∈Ck

WED(p⃗i, z⃗)
2

= argmin
z

∑
i∈Ck

(∑
a∈a

w2
a ·
∑
n∈n

∑
t∈t

(pi,a,n,t − za,n,t)
2

) (7)

2.1.3. Extreme period inclusion

Within this paper, it is also investigated whether the addition of single day extreme pe-

riods reduces the error in optimization outcome [39]. It is expected that the extreme periods

11



maintain some key characteristics of the original time-series and increase the reliability of

the supply of the designed energy system. Three extreme periods are selected based on their

statistical character. 1) The period with the highest demand, 2) the period with lowest solar

availability, and 3) the period with lowest wind availability are chosen:

argmax
i

∥
∑
a,n,t

pi,a,n,t∥1 ∀a ∈ (demand)

argmin
i

∥
∑
a,n,t

pi,a,n,t∥1 ∀a ∈ (wind, solar)
(8)

where pi,a,n,t is a time step value for a time period i, an attribute a, node n, and time t.

The selected periods (index i) are excluded from the periods clustered with the hierarchical

algorithm and added to the set of representative periods.

2.2. Capacity expansion planning

The CEP is designed to represent electric energy systems. The generation, demand,

and availability factors are spatially aggregated to regions and represented by single energy

system nodes. Different dispatchable, non-dispatchable, and storage technologies can be set

up at each node, and transmission can be set up on the lines between nodes to meet the

demand.

The CEP is formulated as a linear optimization model, and the CEP is implemented

in the open-source modelling language “julia” [40] using the “JuMP”’ package for the op-

timization formulation [41]. The model and all data used in this paper are provided in the

publicly available git repository “CapacityExpansion.jl”1 [42].

The following sets are used. n represents the nodes, l represents the lines between

nodes, tech represents all technologies, imp represents impact categories, which can be

monetary or life-cycle assessment impact categories [43], acc represents the type of costs,

which can be annually fixed or variable per produced electric energy, k includes the different

representative periods, t represents the time steps within a period, i represents the time

periods within the full input data. The subsets of the full sets are indicated as setsubset.

1https://github.com/YoungFaithful/CapacityExpansion.jl
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Variables are capitalized for consistency with the published CEP source code. Sets are

indicated in bold. It is assumed that an equation is applied for the entire set with the same

name, except if explicitly written out another set: The usage of, e.g. V ARset1 implicates

V ARset1∀ set1 ∈ set1. The objective function minimizes total system costs, where COST

is cost of different technologies, LL is lost load, cll the variable costs for lost load, LE is

excess emissions, and cle is the variable costs for excess emissions:

min
∑

acc,tech

COSTacc,impmoney ,tech +
∑
n

(LLn · cll) +
∑
imp

(LEimp · cle,imp) (9)

This minimization is subject to the following constraints:

COSTacc,imp,tech =
∑
t,k,n

GENtech,t,k,n · wk ·∆tt,k · cacc,tech,imp

∀ tech ∈ techpw, acc ∈ {var}
(10)

COSTacc,imp,tech =
∑
n

CAPtech,n · (cacc,tech,imp) ∀ tech ∈ techpw, acc ∈ {fix} (11)

0 ≤ GENtech,t,k,n ≤ CAPtech,n ∀ tech ∈ techdisp (12)

0 ≤ GENtech,t,k,n ≤ CAPtech,n · ztech,n,t,k ∀ tech ∈ technondisp (13)

0 ≤ INTRASteche,t,k,n = INTRASteche,t−1,k,n · η
∆tt,k/732h

teche
−

−∆tt,k · (GENtechin,t,k,n · ηtechin
+

GENtechout,t,k,n

ηtechout

)

∀ techout ∈ techstor,out, techin ∈ techstor,in, teche ∈ techstor,e

(14)

INTRASsc,tech,t,k,n ≤ CAPtech,n ∀ tech ∈ techstor (15)

INTRASsc,tech,te0,k,n = INTRASsc,tech,teend,k,n ∀ tech ∈ techstor,e (16)

0 ≤ FLOWdir,techl,t,k,l
(17)∑

dir

|FLOWdir,tech,t,k,l| ≤ TRANStech,l ∀ tech ∈ techtrans (18)

0 = COSTacc,imp,tech ∀ acc ∈ {var}, tech ∈ techtrans (19)
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COSTacc,imp,tech =
∑
n

(TRANStech,l · lenl) · (cfix,tech,imp)

∀ tech ∈ techtrans, acc ∈ {fix}
(20)

GENtech,t,k,n =
∑

lend(n)

(
FLOWuniform,tech,t,k,l −

∑
l FLOWopposite,tech,t,k,l

ηtech,l

)

−
∑

lstart(n)

(∑
l FLOWuniform,tech,t,k,l

ηtech,l
− FLOWopposite,tech,t,k,l

)
∀ tech ∈ techtrans

(21)

∑
acc,tech

COSTacc,imp,tech ≤ LEimp + limimp ·
∑
n,t,k

(wk ·∆tt,k · zdemand,n,t,k)∀imp ∈ implca (22)

LLn =
∑
t,k

(SLACKt,k,n · wk ·∆tt,k)

∑
tech

GENtech,t,k,n = zdemand,n,t,k − SLACKt,k,n

(23)

The variable costs are calculated in Equation 10, where GEN is the generation, ∆t is the

time step length and cacc,tech,imp is the variable cost per electric energy. The fixed costs are

calculated in Equation 11, where CAP is the installed capacity, calculating how many years

are represented by the original time series. The generation is limited for dispatchable tech-

nologies by their installed capacities in Equation 12 and for non-dispatchable technologies

by their installed capacities and temporal availability factor z in Equation 13. The storage

level throughout each period INTRAS is calculated in Equation 14, where ηtech is the effi-

ciency. The total storage is limited to the installed storage capacity in Equation 15 and the

storage level is fixed to be the same at the beginning and end of each period in Equation

16. FLOW is the flow over each transmission line and defined positive in Equation 17.

The absolute flow is limited to the transmission capacity in Equation 18, where TRANS is

the installed transmission capacity. The variable costs of transmission are fixed to zero in

Equation 19 and the costs for the installed transmission capacity are calculated in Equation

20. The total flow per node is calculated in Equation 21. The emissions are limited to the

emission constraints, which can be exceeded by the excess emissions, in Equation 22. The

demand is fixed to the generation and can be exceeded by the lost load in Equation 23.
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2.3. Framework

The CEP model is used to formulate a time-series aggregation testing framework (Figure

3). Three different scenarios are calculated for each case of different input data:

• Reference scenario - R ≡ Dall ≡ Dall&Oall

• Design scenario - Dk

• Design & operational scenario - Dk&Oall

For the reference scenario (R), the energy system design is optimized using all original

time periods of one year. While this is the best temporal representation possible for the

given data, modelling all original time periods is computationally complex and only feasible

for a “simple” CEP.

The original time periods are typically aggregated to representative periods to reduce

the computational complexity. The different time-series aggregation methods introduced in

Section 2.1 are applied. The output of the time-series aggregation method applied to the

original time periods is a set of k representative periods. The reduced temporal information

of k representative periods are used as input data for the design scenario (Dk), which is also

formulated as a CEP. The optimization is computationally less expensive than the reference

scenario, and the energy system design can vary from the reference scenario because fewer

periods are modelled.

The capacities determined in the design scenario Dk are used as an input for the design

& operational scenario (Dk&Oall), which is formulated as a dispatch problem. In a dispatch

problem formulation, the energy system design is fixed, and only the operation is optimized.

The design & operational scenario is computationally less complex than the reference sce-

nario because fixing the design variables reduces the computational complexity significantly.

A lost load variable 23 is introduced for the case that the design has unreliability of supply

and the demand exceeds the installed generation. A lost emission variable 22 is introduced

for the case that the policy target is not met and the total emissions exceed the emission

constraint. All original time periods are modelled in the design & operational scenario.
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Figure 3: For each case, three scenarios are defined and the results from the reference scenario (R) are

compared with the results from the design & operational scenario (Dk&Oall). The results for the reference

scenario (R ≡ Dall ≡ Dall&Oall) are found by optimizing design and operation with all original periods in

a CEP. The design scenario (Dk) only uses k representative periods to determine installed capacities in a

CEP. The results for the design & operational scenario (Dk&Oall) by running a dispatch problem (operation

only with fixed installed capacities, which were determined by the design scenario (Dk)) and allowing both

lost load and lost emissions.

The same single year original time-series is used as an input for the time-series aggregation,

design & operational scenario, and reference scenario.

3. Results: Impact investigation

The impact of time-series clustering on capacity expansion is analyzed.

3.1. Hypothesis: Errors mainly result from wind aggregation

The CEP model has hourly time-series input data for solar availability, wind availability,

and electricity demand for each node. The wind is suspected to be especially difficult to

aggregate because the daily patterns do not share the same regularity of peaks or valleys

as found in solar availability and electricity demand. The hypothesis is formulated that

aggregating the wind time-series leads to the largest errors in optimization outcome, whereas

aggregating the two other attributes, solar and electricity demand, will lead to smaller errors

in optimization outcome. The basis of the hypothesis is that solar availability and electricity

demand have much less inter daily variability compared to wind and more similar shapes

at each day: The solar availability always peaks around noon and electricity demand is

governed by working hours.
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As a first demonstration, the results of time-series aggregation into k = 5 representative

periods for the California 1-node 2016 data show that the aggregated availability factors

exhibit different patterns for solar (a), electricity demand (b), and wind (c) (Figure 4). The

daily curves of solar availability and especially electricity demand are much more similar to

each other than the daily curves of wind availability within each cluster because the peaks

and bases of solar availability and electricity demand occur at similar hours each day. For

example, daily curves of solar availability have their daily maximum near the middle of the

light hours. The wind availability has a much more random appearance, and no clear pattern

within each cluster emerges. The aggregation of wind availability to 5 representative periods

significantly smoothes the original wind periods, and the sum of squared errors is more than

four times worse for the clustering of wind availability compared to the clustering of solar

availability. The smoothing leads to more constant wind availability in the aggregated

representation than it exists in reality. Further, the aggregated representations of wind time

series lack extremes.
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Figure 4: Aggregation of 365 days of solar (a), demand (b), and wind (c) data to 5 representative periods

using a centroid hierarchical-clustering. 5 representative periods are used to show all clusters next to each

other in one figure. The black lines indicate the representative days (centroid). w indicates the weight

of the representative day, which indicates how many original time periods (indicated as dotted lines) are

aggregated in this representative period. The closer the original, colored periods are to the representative,

black period, the lower the clustering error is. The cluster measures in z-normalized sum of squared distances

are a) SSD ≃ 974.0, b) SSD ≃ 1353.2, and c) SSD ≃ 3999.0. It is observed that the daily solar availability

factors and electricity demand profiles within each cluster are much closer to each other and have a lower

sum of squared distances than the daily wind availability profiles within each cluster.
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3.2. Aggregation impact on costs, lost load, and excess emissions

The costs of the reference scenarios (R), which use the full time-series to design the

energy system, are presented in Figure 5, increasing the stringency of the emissions target

on the x-axis. The total annual reference case costs, including installation and operation

for the different dispatchable and non-dispatchable generation technologies, show two key

trends: both (1) total costs and (2) share of non-dispatchable generation increase with

tighter emission constraints (right side of x-axis in each figure). These trends are the same

for the multi-node (a & b) and the single-node (c & d) modelling approaches.
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Figure 5: Costs of the reference scenarios (R) with multiple nodes and a single node for Germany (GER) (a

& c) and California (CA) (b & d): The annual costs for the reference scenarios for 500 to 50kg−CO2e
MWh . The

cost per technology is plotted as a range for the single years of 2010 to 2016 for Germany and the single

years of 2014 to 2017 for California. The range is plotted as a shaded area, and the average is plotted as a

line. A smaller shaded area indicates less variance of the energy system design based on different weather

years. An increase in the shares of photovoltaic costs, storage costs, and especially wind costs as well a

decrease in the shares of coal and natural gas costs are observed for tighter emission constraints.
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The impact of time-series aggregation is analyzed by examining the results of the two-

stage design & operational scenarios (D20&Oall). The two-stage design & operational sce-

narios use the aggregated time series with an exemplary k = 20 representative days for

the energy system design and operate the resulting fixed energy system design with the

full time-series. The results of the two-stage design & operational scenarios (D20&Oall) is

compared with the results of reference scenarios (R), which use the full time-series for both

the energy system design and operation and calculate the relative total system costs, the

lost load, and excess emissions (Figure 6).

The reference costs are the total system costs of the optimal energy system that has no

lost load or excess emissions and is referenced as 1.0 for each case. The relative costs (a) of

cases where time-series aggregation is applied diverge more from the reference total system

costs for tighter emission constraints. The relative costs (a) of cases with aggregated time

series are smaller if less capacity is installed than necessary to meet demand and emission

limits.

The lost load (b) and excess emissions (c) increase for tighter emission constraints and

indicate that major policy targets may not be achieved when using energy system designs

based on aggregated time series data. The GER-18 cases with an emission constraint of

50kg−CO2e
MWh

on average estimate less than 75% of total costs, have more than 5% lost load

and exceed emissions by more than 100%. The impact on these multi-node cases is on average

more than three times the impact on the single-node cases of the same region, GER-1 with

an emission constraint of 50kg−CO2e
MWh

. Also, the impacts on the multi-node model CA-10

are higher than the impacts on the single-node model CA-1 for the emission constraints

100 and 50kg−CO2e
MWh

. More nodes within a model represent the spatial complexity of the

real energy system more accurately. However, the results indicate that more nodes are also

more sensitive to time-series aggregation. The number of features scales linearly with the

number of nodes. The features are compared and combined in the clustering process, and the

increase in features is one reason for the increased sensitivity of multi-node energy systems.

The impact of new time-series aggregation methods should always be tested on multi-node

models with tight emission constraints, and higher temporal resolution is necessary when
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Figure 6: Impact of time-series aggregation on optimization outcome: The total system costs (a) of design &

operational scenarios (D20&Oall) are shown relative to the total system costs of the reference scenario (Rall).

The lost load (b) is shown relative to the total demand, and excess emissions (c) are shown relative to the

total emissions. The optimization outcome is shown for cases from 500 to 50kg−CO2e
MWh using 20 representative

periods and Germany with 18 nodes, Germany with 1 node, California with 10 nodes, and California with

1 node. An increase in the error in the optimization outcome is observed for tighter emission constraints.

Especially the reliability of supply indicated by lost load and the fulfilment of the policy target indicated by

lost emission decreases for tighter emission constraints.

modelling more nodes.

3.3. Cause of lost load and excess emissions

The cause of lost load and excess emissions is explained to better understand errors in

time-series aggregation.

Excess emissions are caused if the design case (Dk) with time-series aggregation under-

estimates the actual dispatchable generation required in the operations run (Oall) because

in the model, only dispatchable generation is carbon-emitting. The underestimation of the

required dispatchable generation could arise from an error in foreseeing long duration of low

wind and solar availability, and therefore too little storage capacity (“storage error”), but

could also arise due to insufficient extreme period representation and too small dispatchable

generation capacities (“power error”).

The lost load is caused if the difference between the demand and non-dispatchable gen-

eration in the full time-series cases – net load – is greater than the installed dispatchable

generation and available storage. Lower generation from renewable generation sources and
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the same demand leads to a higher “actual” netload. A net load greater than the installed

dispatchable generation and available storage leads to a lost load.

The time-series aggregation errors are introduced to the CEP model by the demand

time-series and the availability time-series of non-dispatchable generation (Equations 23

and 13). The error in expected demand is independent of the emission constraint, but

the error in expected non-dispatchable generation scales with the installed non-dispatchable

capacity. The correlation of error in the expected non-dispatchable generation and installed

non-dispatchable capacity is a possible explanation why both the share of non-dispatchable

generation and the time-series aggregation impacts on lost load and excess emissions increase

for tighter emission constraints (Figures 5 and 6).

The effects of lost load and excess emissions are hidden in CEP planning results if the

resulting system design is not operated with the full time-series.

3.4. Wind aggregation impact on optimization outcome

Four groups of cases are compared to study the hypothesis that aggregating the wind

time-series causes most of the error in optimization outcome: In the first group, none of the

three attributes is represented by its full time-series. In the other groups out of the three

attributes (demand, solar, and wind), one is represented by the full time-series, and the

other two are reduced to k = 20 representative periods. It is observed that cases with a full

representation of the wind time series have relative costs much closer to 1.0 and significantly

reduced lost load and excess emissions compared over multiple years of weather data and

regions (GER-1, GER-18, CA-1, CA-10)(Figure 7). Compared to the other cases with a

full representation of no time series (“none”), the demand time series, or solar time series,

representing the wind data without time-series aggregation reduces the error in relative costs

from up to 34% to less than 5.6%, the lost load from up to 7.3% to less than 0.22% and

excess emissions from up to 177% to less than 22.5%. It can be concluded that the hypothesis

holds: aggregating – and thereby smoothing – the wind time-series mainly leads to errors in

optimization outcome, whereas aggregating solar and demand lead to significantly smaller

errors in optimization outcome.
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Figure 7: Single fully represented time-series: Out of the three attributes, one is represented by the full

time-series, and the other two are aggregated to 20 representative periods. Each fully represented attribute

forms one group of cases. An additional group of base cases (none) is modelled, where no attribute is

represented by a full time-series and all three attributes are aggregated to 20 representative periods. The

error in optimization outcome is the difference of relative costs (a), lost load (b), and excess emissions (c)

compared to the reference scenario (relative COST = 1, LL = 0, LE = 0). The figure shows 50kg−CO2e
MWh

cases with multiple years of time-series data and Germany and California being represented as single node

and multiple nodes models. It is observed that the error in optimization outcome is lowest in cases of a

fully represented wind time series. It is concluded that aggregating and thereby smoothing of the wind

time-series mainly leads to errors in optimization outcome, whereas aggregating the two other attributes,

solar and demand leads to significantly smaller errors in optimization outcome.
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4. Addressing the errors introduced by aggregating the wind time-series

Given the above errors introduced by clustering time periods to generate representative

days, 4 options are explored for reducing the impacts of the aggregation: (1) adding extreme

periods to cluster representatives; (2) increasing the number of representative periods k; (3)

using the medoid instead of the centroid as cluster representation; and (4) weighting of

different attributes like wind and solar during clustering.

4.1. Adding single day extreme periods

Because unmet load usually occurs at times of extreme conditions, it is intuitively ex-

pected that the addition of extreme periods improves the energy system reliability of supply.

Three extreme periods are selected: 1) the period with the highest demand, 2) the period

with the lowest solar availability, and 3) the period with the lowest wind availability. These

three days are added to the set of k = 20 days to represent worst-case outcomes requiring

more backup dispatchable capacity investment. Figure 8 shows optimization outcomes in

terms of total system costs, lost load, and excess emissions for cases with and without simple

extreme values. It is found some improvement with extreme days: the error in total system

costs (the difference to the reference scenario (R)) is slightly smaller, while the lost load is

significantly reduced by adding extreme days. However, excess emissions increase for cases

with extreme values compared to cases without extreme values.

The change in installed capacities can explain the increase in excess emissions and de-

crease in lost load without a significant change in total cost. More dispatchable capacity, in

this case, natural gas, is installed to meet the single extreme days. The installation of more

dispatchable generation is necessary to meet the demand and decrease lost load. However,

the necessary total dispatchable generation and its emissions are underestimated in the de-

sign optimization because the extreme days only represent 3 of total 365 days, and each has

the weight according to 1
365

.

Extreme period selection is used in the remainder of this paper due to its significant

reduction of lost load.
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Figure 8: Extreme period selection: The error in optimization outcome is shown as relative costs (a), lost

load (b), and excess emissions (c) for 50kg−CO2e
MWh cases with and without extreme period selection and a

total of 20 representative periods. Cases with multiple years of time series are shown for each representation

of Germany and California as single node and multiple nodes models. It is observed that the errors in

total system costs and lost load decrease for cases with extreme period selection compared to cases without

extreme period selection. However, the significant decrease in lost load comes with an increase in excess

emissions.

4.2. Increasing the number of representative periods

The errors in relative total system costs and lost load on the average decrease with

more representative periods (Figure 9). However, more representative periods only reduce

the excess emissions on average for all modelled regions when more than 30 representative

periods are used. The lost load is still up to 0.3% of the total demand, and the excess

emissions exceed 100% even in some cases with 80 representative periods. It can be concluded

that using more representative periods generally decreases the error in optimization outcome,

as would be expected. But improvement is slow with the increasing number of representative

periods (k), and relatively high numbers of representative periods are required. Thus the

reduction in outcome error comes at high computational costs.
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Figure 9: Numbers of representative periods: The error in optimization outcome is shown as relative costs

(a), lost load (b), and excess emissions (c) for 50kg−CO2e
MWh cases with varying numbers of representative

periods. Cases with multiple years of time series are shown as areas for each representation of Germany and

California as single node and multiple nodes models. It is observed that the errors in total system costs and

lost load decrease with more representative periods at high computational expenses.

4.3. Using the medoid instead of a centroid cluster representation

In the centroid cluster representation, each group of aggregated time periods is rep-

resented by the average of all aggregated time periods. However, in the medoid cluster

representation, each group of aggregated time periods is represented by the original time

period closest to the average of the group, which constraints the cluster representation to one

of the original time periods. Figure 10 shows the relative total system costs, the lost loads,

and excess emissions for cases with a centroid and medoid cluster representation. The errors

in total system costs and lost load slightly decrease using a medoid instead of a centroid

cluster representation for the cases modelling California. However, the errors in total system

costs, lost load, and excess emissions significantly increase for all cases modelling Germany

with multiple nodes and using a medoid instead of a centroid cluster representation.

The single, original time period, which is chosen to represent the group of time periods,

has to sufficiently represent the entire group in each attribute and at each node. Representing

the group sufficiently for each attribute and at each node is more difficult for more nodes

and greater inter-spatial variation of the time periods. It is found that the error in relative

total costs almost doubles from up to 38.6% to up to 67.1%. The error in lost load increases

more than 50 times from up to 1.29% to up to 70.7%. The error in excess emissions more
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Figure 10: Centroid compared to medoid cluster representation: The error in optimization outcome is shown

as relative total cost (a), lost load (b), and excess emissions (c) for cases using either a centroid or a medoid

cluster representation. 50kg−CO2e
MWh cases with 20 representative periods and multiple years of data for the

representations of Germany and California with multiple nodes are investigated. It is observed that the

error in optimization outcome is greater for the multiple nodes representation of Germany if the medoid

instead of the centroid cluster representation is used. Representing the group sufficiently for each attribute

and at each node is more difficult for more nodes and greater inter spacial variation of the time periods.

than doubles from less than 200% to up to 543.5% using a medoid instead of a centroid

cluster representation when modelling Germany with multiple nodes. Constraining the

cluster representation to one of the original time periods can introduce significant errors to

optimization outcome, and it is time-series input data dependent if a model is significantly

affected by the increase in error. A priori measures of the time-series can not unveil the entire

impact on the energy system. So to avoid the possibility of significant error introduction,

the cluster centroid is a better but not totally accurate representation.

4.4. Can re-weighting the attributes during clustering improve optimization outcomes?

Lastly, giving each attribute a variable weight in the clustering method is explored. The

higher the weight, the more important the algorithm will give to matching that attribute

during clustering. One might imagine, for instance, that weighting errors in wind clustering

more heavily will result in clusters that better represent wind variability and thus solve the

above problem. The error in optimization outcome is analyzed as the relative total system

costs, lost load, excess emissions and differences in installed capacities compared to the

reference scenario. Detailed results are provided in the supplementary information (SI).
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It is concluded that the neutral weighting of attributes is the best choice to avoid that

the error in either total system costs, lost load, or excess emissions more than double. Using

weighting other than neutral can reduce the error of either total system costs, lost load,

excess emissions, or a certain installed capacity can. Still, the reduction always correlates

with the increase of another error.

5. Conclusion

Time-series aggregation methods are often applied to reduce the computational complex-

ity of CEP models. These methods have been investigated for cases of current or near-future

electricity system studies. In this work, it is shown that the error in optimization outcome

increases for energy systems that have ambitious policy targets with tighter emission con-

straints and have higher shares of non-dispatchable (i.e. renewable) generation. The designed

energy systems have higher unmet demand and emit more emissions than initially planned

for. Thus, the energy systems are less reliable in regards to served load and do not meet

emission policy targets. It is identified that aggregating and thereby smoothing the wind

time-series mainly leads to errors in optimization outcome, whereas aggregating the two

other attributes, solar and demand, leads to significantly smaller errors in optimization out-

come. It is, therefore, recommended not using time-series aggregation to representative days

but using the original, non-aggregated time series in CEP models with ambitious emissions

targets if at all possible. The drawback of this method is that complex CEP models will not

be solvable on given computational hardware.

To better understand the error introduced by time-series aggregation, furthermore (1)

adding extreme days, (2) increasing the number of representative periods, (3) using a medoid

instead of a centroid cluster representation, and (4) an attribute specific clustering method

was analyzed. (1) Adding extreme days addresses lost load at low computational costs but

does not solve or slightly worsens excess emissions. (2) Increasing the number of repre-

sentative periods can decrease error in total system costs and lost load but comes at high

computational costs. (3) It was identified that using a medoid instead of a centroid cluster

representation can lead to significant errors in optimization outcome if the single, original
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time period is not able to represent all attributes and nodes sufficiently. (4) It is found that

using the same attribute weights for wind, solar, and demand is best to avoid greater errors

in optimization outcomes. None of the analyzed methods was able to sufficiently address

the errors in optimization outcome, which are primarily introduced by the aggregation. It

is thus emphasized that one should always validate the optimization output in the form of

the energy system design in a second dispatch step. The second dispatch step identifies

infeasibility (constraint violation) in the form of lost load or excess emissions. It determines

the quality of the energy system design resulting from time-series aggregation.

This paper provides insights into the problems arising during the design of reliable energy

systems with a high share of renewable generation sources in combination with current meth-

ods of time-series aggregation to reduce the computational complexities. An Open Source

analysis framework combining time-series aggregation and capacity expansion is provided.

This framework is useful for future research to test newly developed time-series aggregation

methods and avoid overseeing significant errors. Future research includes the development

and investigation of more complex methods to reduce the error in optimization outcome

mainly introduced by the aggregation of the wind time series. Other methods like the sea-

sonal storage coupling approach presented by Kotzur et al. [44] should be tested to reduce

errors in sizing long-term storage more accurately and thereby reduce lost load and excess

emissions. It should be investigated whether aggregation to representative hours instead of

representative days reduces the smoothing effect and thereby decreases lost load and excess

emissions.
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mization of district energy systems: I. Selection of typical operating periods, Computers and Chemical

Engineering 65 (2014) 54–66. doi:10.1016/j.compchemeng.2014.03.005.
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Supplementary information

Additional information about the re-weighting of attributes during the clustering is pro-

vided in this section.

Can re-weighting the attributes during clustering result in improved optimization outcomes?

Giving each attribute a variable weight in the clustering method is explored. The higher

the weight, the more important the algorithm will give to matching that attribute during

clustering. The error in optimization outcome is analyzed as the relative total system costs,

lost load, excess emissions and differences in installed capacities compared to the reference

scenario and divided by the total installed power capacity. Figure 11 shows average error

across all years in optimization outcome for 50kg−CO2e
MWh

cases with varying weights for each

attribute in the design & operational scenarios (D20Oall). The darker the blue colour, the

more positive the difference is from the reference scenario, and equivalently the darker red,

the more negative the difference is. The best case with no difference has a light grey colour.

The scales for the colours change for each plot and are shown in the colour bar next to each

plot. The attribute weights vary along the x- and y-axis of the plots. In the direction of

the positive x-axis, the attribute weights for wind are increased, and in the direction of the

positive y-axis, similarly, the attribute weights of solar are increased. The base case has an

attribute weight of 1.0 for solar and wind as well as for the electricity demand. The base case

is found in the centre of each figure, and the base case is equivalent to using a non-weighted

Euclidean distance measure during clustering. All previously reported results correspond to

using attribute weights as in the base case (centre of each plot).

The errors in total system costs and excess emissions are greatest when weighting solar

higher than demand and wind, as Figure 11 shows. On the other hand, errors in total

system costs, lost load, and excess emissions also increase for a higher weighting of wind

than demand and solar.

It is observed that the reduction of one specific error using attribute weighting often leads

to an increase of another specific error. This contradictory effect applies to the installed

capacities of wind and PV shown in Figure 11. The summation of necessary capacities is
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Figure 11: Attribute specific weighting: The error in optimization output is shown as (a) relative total costs,

(b) lost load, (c) excess emissions and difference in installed capacities of (d) wind, (e) PV, and (f) natural

gas between the design & operational scenario (D20&Oall) with an aggregated time series and the reference

scenario (R) with the full time-series. The attribute weights vary along the x-axis for wind and along the

y-axis for solar, while the attribute weight of demand is 1.0 in all cases. The base case has an attribute

weight of 1.0 for all attributes and is found in the centre of each figure. It is observed that the reduction

of one specific error using attribute weighting often leads to an increase of another specific error. It is also

observed that the centre does not contain any immoderate errors in either direction and is, therefore, the

best choice of attribute weights.
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too little in any attribute weighting configuration. The overall effect that time-series data

are smoothed by aggregation remains because increasing the weighting of the attribute (a)

leads to less smoothing of the time-series data of attribute (a), but more smoothing of the

time-series data of the attributes (b) and (c). Attribute weighting only shifts the capacities

from one generation or storage technology to another.
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