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Root systems of crops play a significant role in agroecosystems. The root system is essential for water and nutrient uptake, plant
stability, symbiosis with microbes, and a good soil structure. Minirhizotrons have shown to be effective to noninvasively
investigate the root system. Root traits, like root length, can therefore be obtained throughout the crop growing season.
Analyzing datasets from minirhizotrons using common manual annotation methods, with conventional software tools, is time-
consuming and labor-intensive. Therefore, an objective method for high-throughput image analysis that provides data for field
root phenotyping is necessary. In this study, we developed a pipeline combining state-of-the-art software tools, using deep
neural networks and automated feature extraction. This pipeline consists of two major components and was applied to large
root image datasets from minirhizotrons. First, a segmentation by a neural network model, trained with a small image sample,
is performed. Training and segmentation are done using “RootPainter.” Then, an automated feature extraction from the
segments is carried out by “RhizoVision Explorer.” To validate the results of our automated analysis pipeline, a comparison of
root length between manually annotated and automatically processed data was realized with more than 36,500 images. Mainly
the results show a high correlation (r = 0:9) between manually and automatically determined root lengths. With respect to the
processing time, our new pipeline outperforms manual annotation by 98.1-99.6%. Our pipeline, combining state-of-the-art
software tools, significantly reduces the processing time for minirhizotron images. Thus, image analysis is no longer the bottle-
neck in high-throughput phenotyping approaches.

1. Introduction

Roots are an essential component of the global biosphere.
They are mainly responsible for the acquisition of the
resources water and nutrients for the entire plant. In most
ecosystems, these resources are the limiting factors for
growth of plant organs and yield [1]. Water and nutrient
uptake are directly linked to the parameters defining the root
system, like length, diameter, or branching. Therefore, col-
lecting information about the root system becomes increas-
ingly significant. In order to improve water and nutrient
uptake of plants for specific soil and climatic conditions, it
is essential to obtain information about the root system
architecture of plant species that have been shown to be ben-
eficial for the given conditions [2]. For plant breeding, this

will help to develop new genotypes which are able to cope
better with, e.g., drought-stress and are more efficient in
nutrient uptake [3]. This will not only help to increase the
cultivated area for certain species, but it might also lead to
higher yields. Especially this applies to locations with less
suitable environments for a highly productive agriculture.
The negative impact on the soil should be minimized at
the same time [4].

The direct observation of roots is difficult, because the
root system is surrounded by soil, making it challenging to
visually measure the roots. To avoid that measurements
heavily disturb the plant and its environment, permanent
installed equipment, like rhizotubes, or the construction of
a minirhizotron is crucial [5]. Minirhizotrons are useful
tools to collect data about the root system without disturbing
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the environment of the roots or the plant itself. Moreover,
they allow root observations over the whole vegetation
period at a high temporal resolution and the comparison
of different vegetation periods and crop types. Transparent
rhizotubes, installed below ground, function as a window
in the soil. Guided scanners and camera systems provide
high-resolution images of the roots and the surrounding soil.
Consequently, the noninvasive root measurements can be
repeated multiple times during the growing period under
in situ conditions. However, large minirhizotron facilities
include tubes in different depth levels. Measurements in sev-
eral depths and time-lapse observations result in big datasets
that often consist out of 10,000 images and more [6]. Images
provided by minirhizotrons strongly differ from, e.g., root
scans gained from excavated and washed roots [7]. Various
soil conditions around the tubes in different depths lead to
a wide range of heterogeneous images with different charac-
teristics. Beside the actual roots, soil structures and disturb-
ing fragments, including small animals, are depicted.
Different soil conditions in various depths and at varying
locations lead to varying color and light conditions and
therefore make the automated processing of minirhizotron
images a challenging task [8].

To analyze roots, mainly two steps are needed, the
segmentation of root objects and the object quantification
[9]. Due to the heterogeneity within minirhizotron images,
the segmentation is very complicated. Different analysis
approaches emerged, represented by a numerous collection
of software tools, and designed to extract the information
about the root system [10]. These tools work manually or
in a (semi-)automated way. Manual annotation tools for
minirhizotron images, like “WinRhizoTRON” (Regent
Instruments Incl.) or RhizoTrak [11], rely on the human
interaction with each individual image taken, to track each
root by hand. It requires the user to follow every root
depicted in the image by hand and mark start, branch, and
endpoints. Semiautomated and automated approaches with
software tools exist to facilitate and speed up the postproces-
sing of the images [8]. Filter algorithms used to increase the
contrast between root and background and to find root struc-
tures by typical geometrical shapes were proposed by several
authors [7, 12, 13]. Semiautomated software like “RootSnap!”
(CID Bioscience) and “Rootfly” [14] require a manual anno-
tation, but also provide root suggestions by a filter created on
an initial dataset. Consequently, most of these programs are
strictly limited to certain type of images, like high-contrast
root scans [15]. Eventually, this has the consequence that
the annotation of the roots in most minirhizotron images
needs to be done almost exclusively manually. Depending
on the number of images taken and the number and length
of roots, the manual and semiautomated analysis can take
weeks to years. Previous studies found that the estimated
amount of minirhizotron images, annotated with an annota-
tion software, was between 17 and 38 images h −1 [16].
Adapted to the working routine with “Rootfly,” it takes 1-
1.5 h annotation time for an image area of 100 cm2 depicted
soil [17]. Further, the results underlie the subjectivity of the
annotator, because annotations are done according to per-
sonal experiences and knowledge of the annotator.

Deep learning has developed to the gold standard of
machine learning methods within the recent years. Deep
neural networks are able to learn from big datasets and pro-
vide outstanding results on complex cognitive challenges,
even beating human performance in some application fields
[18]. Convolutional Neural Networks (CNN), a subclass of
deep learning models, have been created to deal with data
in the shape of multiple arrays and are therefore suitable
for high-dimensional data like images [19]. They have the
potential to perform a decent automated detection of regions
of interests within a heterogeneous and noisy dataset [20].
Transferred to the analysis of minirhizotron images, CNNs
should have the capability to precisely identify and segment
roots in images, where the roots cannot be segmented suffi-
ciently by, e.g., explicitly programmed thresholds or filter
algorithms. CNNs were already used successfully to localize
plant organs, including roots [21–24]. However, the use of
CNNs has mainly been proven on data originating from
controlled environment, like lab experiments [15]. Further-
more, they are often limited to the use of one or a few fixed
pretrained neural network models [25], or they are not easily
usable for non-IT professionals [26]. The main reason for
this is the required knowledge and competences in machine
learning and programming needed to create a CNN-based
system. Especially the data partition between training and
validation, the process of annotation and the setup of net-
work architecture make the use of CNNs complicated [27].
Although the use of CNNs is promising for root segmenta-
tion and the first approaches to use CNNs to segment roots
have been successfully accomplished with, e.g., the “Seg-
Root” networks, it is not subject of many published studies
and not yet widely used as phenotyping tool for root traits
[28]. To make the advantages of CNNs widely utilizable, a
software, combining the annotation, training, and segmenta-
tion process with CNN together in an interface easy to han-
dle is the key for general use of neural networks for
automated root segmentation. The recently published soft-
ware tool “RootPainter” is one of the most promising
approaches for this task [29].

However, fast and reliable segmentation is only the first
step of root analysis. For the root quantification, another
tool is required to obtain morphological and topological fea-
tures from segmented images. For this task conventional
automated root analysis tools, “WinRhizo” (Regent Instru-
ments Incl.) and “IJ_Rhizo” [30] can be used. Recent prog-
ress in the development of root system feature extraction
from high-contrast images or scans has resulted in new soft-
ware tool with the ability of extracting multiple features with
a high precision. On the front line of current developments
is the new software “RhizoVision Explorer,” providing the
functions to accurately skeletonize a high-contrast seg-
mented image, to correct the skeleton and deriving several
features from it [31].

The aim of our study is to develop a generally applicable,
automated analysis pipeline, based on state-of-the-art tech-
nologies and software to extract root traits from minirhizo-
tron images. This includes data annotation for neural
network training, segmentation, and feature extraction. The
automated analysis pipeline has to meet the requirements
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in (i) availability and feasibility, (ii) accuracy and compara-
bility, and (iii) speed and efficiency. It was an important
requirement to us that this workflow should be feasible for
root scientists, who only have basic knowledge in program-
ming or computer science. This workflow should make fast
root phenotyping easily accessible for newcomers in root sci-
ence and lower the time and effort needed to get into the
topic. Therefore, it relies on already published software. This
workflow further should underline the practicability of deep
learning phenotyping tools for the scientific root analysis
routine. All software required to use this automated root
image analysis pipeline is freely available and easy to operate.
Another key advantage of our study is the scope of data used
for validation and comparison and the concomitant claim to
a general validity of this pipeline. To test and validate the
automated analysis pipeline, datasets obtained from several
years and two minirhizotron facilities were processed and
compared to previously manual annotated data [6, 32–34].
Previous studies evaluating the results of a CNN-automated
image analysis for root images originating from (mini)rhizo-
trons used between 40 and 857 images [17, 25, 28]. In our
test, we evaluated the results of more than 107,000 images
of which we used more than 36,500 for a direct one-to-one
comparison of manual human annotation to our automated
analysis pipeline. The images represent different in situ con-
ditions. In this paper we will present the detailed procedure
on operating the automated analysis pipeline and compare
its performance to a previously done manual annotation for
a decent evaluation.

2. Materials and Methods

2.1. Experimental Test Site. The data used for the automated
analysis pipeline were collected at the two minirhizotron
facilities at the Selhausen test site of the Forschungszentrum
Julich GmbH (50° 52′ 07.8″N, 6° 26′ 59.7″E), Germany [35,
36]. The field, in which the minirhizotron facilities are
located, has a slight incline with a slope of under 4°. The
two minirhizotron-facilities are approximately 150m apart.
The minirhizotron facility located at the top of the field is
hereafter referred to as RUT (rhizotron upper terrace) and
the minirhizotron at the lower part of the field as RLT (rhi-
zotron lower terrace). The thickness of the soil layer with
silty loam texture varies strongly along the field slope. While
it is not present at the top, its thickness at the bottom is up to
3m. At RUT, the gravel content is 60%, while at RLT, it is
only 4%. Both facilities contain 54 horizontally installed,
transparent tubes with each a length of 7m and an outer
diameter of 6.4 cm. The tubes are separated into three plots
with each three vertical, slightly shifted (10 cm) rows of six
tubes, where three different treatments can be studied. The
tubes in each row are installed in -10 cm, -20 cm, -40 cm,
-60 cm, -80 cm, and -120 cm depth. Past treatments include
different irrigation patterns (sheltered, rainfed, irrigated),
different sowing densities and dates (later sowing in shel-
tered plot), or cultivar mixtures (two single cultivar treat-
ments and one mixture). The two minirhizotron facilities
were installed in 2012 (RUT) and 2014 (RLT), respectively.
Further construction details are explained in [6].

2.2. Data Acquisition. Two different camera systems manu-
factured by Bartz (Bartz Technology Corporation) and VSI
(Vienna Scientific Instruments GmbH) were used to capture
the root images in the minirhizotrons. Both camera systems
are designed to be used manually. A regular measurement
produces 40 images per tube. 20 images are taken 80° clock-
wise and 20 images 80° counter-clockwise from the tubes top
point [6, 32, 37, 38]. In this study, the collected images of
two crop growing seasons from 2015/2016 to 2017 were
taken into account. Depending on the year and measure-
ment date, either the Bartz or the VSI system was used.
The crops cultivated at the test site and used for this study
were Triticum aestivum cv. Ambello in 2015/2016 (winter
wheat) and in 2017 Zea mays cv. Zoey. Table 1 gives an
overview on camera system used, the resolution of the
images, measurement years, measured time period and culti-
vars observed. Depending on crop growing season, the total
amount of measurement dates varied between 21 and 38.
The amount of images, taken at one measurement date, var-
ied according to the amount of tubes measured at this mea-
surement date (Table S1). This was depending on the state of
vegetation evaluated in field.

Over the past years, the root images collected in the
minirhizotron facilities in Selhausen were analyzed manu-
ally, using “Rootfly” as a semiautomated tracking tool for
the root length and root counts [6, 14, 32, 33, 38]. In this
study, the images of the years 2015/2016 and 2017 were ana-
lyzed. The manual annotation of 2015/2016 and 2017 has
been already published in [32, 34]. Further a subsample of
the root images was manually annotated by two persons sep-
arately in “Rootfly.” 1,760 images were used for the compar-
ison between both annotators, and the annotators and the
results of the automated analysis pipeline, to test if there
are differences in terms of human subjectivity.

2.3. Software Tools. Our proposed automated minirhizotron
image analysis pipeline is based on two software tools for the
segmentation [29] and the automated feature extraction
[31]. Furthermore, scripts to convert the segmented images
and to analyze the outcome are available. For an easy acces-
sibility, all scripts are available together within the GUI of
the executable “RootAnalysisAssistance” (Supplementary
Material). The conversion of the segmented images is also
possible within “RootPainter.”

2.3.1. Segmentation. “RootPainter,” a software tool for the
deep learning segmentation of biological images with an
included annotation function, provides an interactive train-
ing method within a GUI, using a U-net-based CNN. U-
net was developed to train with less images for a more pre-
cise segmentation and is therefore suitable when it comes
to images where the manual annotation is especially time-
and labor-consuming [17, 39]. “RootPainter” was developed
to make training-data creation, annotation, and network-
training accessible for ordinary users. It provides a dataset
creation function, which allows an easy selection of training
images and cropping them in multiple tiles and to a suitable
size for the interactive training. The training mode provides
an interactive graphical platform to manually annotate a
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small part of the dataset and create a neural network model.
Further, a mode to segment whole image directories at once
is provided. For training and segmentation, a graphics pro-
cessing unit (GPU) is required [29]. However, a full minirhi-
zotron image analysis is based on two main components: the
segmentation and the root trait extraction. Although “Root-
Painter” provides an inbuilt function for basic root trait
extraction based on the previous segmented images, it does
not provide, e.g., a skeleton correction function and a com-
prehensive feature extraction including multiple root traits.
For our pipeline, the feature extraction part should provide
multiple morphological and architectural root features with
a high accuracy. Furthermore, the possibility of a systematic
correction function should be implied. Therefore, a platform
fulfilling these requirements was used for feature extraction.

2.3.2. Feature Extraction. “RhizoVision Explorer” represents
the current state-of-the-art technology with a sophisticated
automated root trait extraction from segmented root images,
by combining the abilities of several existing root image
analysis platforms. This includes skeletonization of the seg-
ments, filter, filling, smoothing, and pruning functions [31,
40]. However, like most programs for automated root sys-
tem analysis, it is built for the use with binary images or
high-contrast scans and therefore not suitable for minirhizo-
tron images. The capability of “RhizoVision Explorer” is
nevertheless useful when applied to already segmented mini-
rhizotron images.

2.4. Analysis Pipeline. The starting point for the automated
analysis pipeline is a directory containing the raw images
captured at the minirhizotron facility. The pipeline was
run on a GPU-server with 4 Nvidia GeForce RTX 2080 Ti
(NVIDIA Corporation). As client, a computer with an Intel
i5-8265U processor and 24GB RAM, operated on Windows
10, was used. However, it is also possible to run the pipeline
on one machine, if there is a GPU with CUDA available, or
to use the “Google Colaboratory” (Google Colab). An over-
view of all following steps is explained in Figure 1.

2.4.1. Preprocessing. The first step of the pipeline is the pre-
processing of the images. Depending on the image acquisi-
tion system either an up- or down-scaling, a distortion
correction is performed (supplementary data). In the same

step a labeling, sorting and registration of the images are
done automatically. If the images are already ready to use,
this step can be omitted.

2.4.2. Training. This step is only needed if no suitable neural
network model exists for the targeted dataset. The process,
to train a model for root segmentation, starts with the crea-
tion of a training dataset and subsequently a new project in
“RootPainter.” We highly recommend to balance the train-
ing data according to the factors influencing image visually,
in order to maximize the heterogeneity in the training data.
Images with different quantities of roots and various root
types at different locations should be included. In our case,
the training dataset for one model contains a balanced
amount of images from two different minirhizotron facili-
ties, respectively, soil types, depths, tubes, and dates. We
used only a small amount of images from all available
images. For each camera system, a separate model was
trained, because the images of the two cameras differ signif-
icantly. The annotation can be done in the GUI. The roots
are annotated as “foreground” and soil and other not root-
belonging fragments as “background.” After the training is
started, “RootPainter” automatically creates neural network
models, depending on the annotation done previously. The
progress can be seen in real time, because “RootPainter” pro-
vides previews of the segmentation done by the actual
model. These proposals can be corrected and supplemented
by the user. The training procedure used in this study is the
“corrective training.” It is intended for large datasets and
therefore suitable for the minirhizotron image data. Essen-
tially, this training approach starts with annotating a few
images in detail and then continues with correcting only
the false-positive and false-negative suggestions of the cur-
rent model. After finishing the interactive annotation, the
training is completed automatically. Further details and
instructions are explained in [29].

2.4.3. Segmentation. The fully automated segmentation is
done with the best model previously trained with a small
selection of images from the corresponding measurements.
To perform the fully automatic segmentation, all images
have to be located in one directory. The segmentation pro-
cess itself is started from the “RootPainter” main menu.

Table 1: Overview of the camera systems and experiment timeline of minirhizotron images acquisition.

Camera system Bartz VSI

Original resolution (px) 754 × 510 3280 × 2464

Converted resolution (px) 1508 × 1020 2060 × 2060

Real size (mm) 16:5 × 23:5 20 × 20
Growing season 2015/2016 and 2017 2017

Culture
2015/2016: Triticum aestivum cv. Ambello

2017: Zea mays cv. Zoey
Zea mays cv. Zoey

Time period (dd/mm/yy)
16/11/15-23/06/16
23/06/17-12/09/17

08/06/17-22/06/17
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For each minirhizotron image stored in the directory, one
segmented image will be created (Figures 2(a) and 2(b)).

2.4.4. Converting. To import the segmented images into
“RhizoVision Explorer” in the next step, it is essential to
convert the images to binary; otherwise, the images are not
loaded properly (Figure 2(c)). This step is performed by a
conversion script, which converts the monocolored seg-
mented images to black and white images and reduces the
images information to binary by only giving information
for either black or white pixels. The conversion script is
available as Python script or within the RootAnalysisAssis-
tance-GUI. It is possible to either browse the image folders
to convert manually or to process the conversion of a certain
image directory in a batch mode. This option is suitable for
fast processing a large amount of segmented images. The
conversion option is also available within the “RootPain-
ter”-GUI.

2.4.5. Feature Extraction. The final step is the feature extrac-
tion, performed by “RhizoVision Explorer.” This is also
done in batch mode. The threshold of the nonroot filter, hole
filling, edge smoothing, and pruning was chosen in a stan-
dardized way and uniform for each parameter, depending
on the resolution of the image. For the images resulting from
the Bartz system, the threshold is 13 px and for the VSI sys-
tem 20 px. This results in filtering parts smaller than
0.2mm2 and filling holes bigger than 0.2mm2. To minimize
the influence of segmentation mistakes at the border
between root and soil and thus reduce the false detection
of nonexistent laterals, the minimum size for a lateral root
to be detected as a branching root is the parent roots radius
multiplied with 0.2mm. The architectural and morphologi-

cal information are exported as CSV, and the processed seg-
mented images with the calculated skeleton are saved as
PNG (Figure 2(d)). The feature extraction is started from
the “RhizoVision Explorer” GUI. Further details and back-
ground information are explained in [40].

2.4.6. Root Analysis. As the last step in addition to the feature
extraction, the two-dimensional root length density (RLD) is
calculated from the total root length and the window size of
the image in the unit of cm cm −2. Furthermore, the number
of root tips and branch points, the total root length, the
branching frequency, the network and surface area, the
diameter (average, median, and maximal), the perimeter,
and the volume can be extracted from the “RhizoVision
Explorer” output CSV and applied to spatiotemporal analy-
sis of the root system (Figure S1 and supplementary data).

2.5. Statistics, Data Processing, and Visualization. Python 3.8
with Pandas 1.0.5, Numpy 1.18.5, Matplotlib 3.2.2, Pillow
8.2.0, and SciPy 1.5.0 has been used for statistics, data pro-
cessing, and visualization.

The F1 score (Equation (1)) is a measure commonly
used to evaluate neural network models [29]. The F1 com-
bines precision and recall and has been designed to work
on imbalanced data. Precision evaluates the percentage of
all correct positive predictions, and recall indicates how
many positive of all positives the model found. F1 values
are bounded between 0 and 1, and the highest value is indi-
cating perfect precision and recall.

F1 = 2 ∗
precision ∗ recall
precision + recall

, ð1Þ

Obtaining images
from minirhizotron

Small image
sample

Interactive training
with RootPainter

automatic
segmentation

with RootPainter
Neural network

model

Converting
segmented images

to binary

Automatic feature
extraction with

RhizoVision Explorer

RESULTS,
e.g. root length
density (RLD)

Figure 1: Schematic overview of the workflow of the automated analysis pipeline starting with image acquisition in the minirhizotron
facility.
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precision =
TP

TP + FP
, ð2Þ

recall =
TP

TP + FN
, ð3Þ

where TP are the true-positive, FP the false-positive, and
FN are the false-negative pixels. The F1 score was calcu-
lated during the interactive training. True-positive pixels
are correct recognized pixels, where the roots are correctly
classified as roots. False-positive pixels are pixels classified
as root, not including a part of a root, and false-negative
pixels are pixels including parts of a root, but are classified
as background.

The outcome of the automated root annotation was com-
pared to the manual annotation by means of the Pearson cor-
relation coefficient, both on the dataset as a whole as well as
on individual measurement dates for the seasons 2017. For
the same season, we calculated the mean of the total root
length per image for each measurement date and used a
Welch two-sample t test to assess whether the differences
between automated analysis and manual annotation of the

total root length (ΔRL) were statistically significant. Further-
more, the normalized root mean squared error (NRMSE) is
calculated according to

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 yi − ŷð Þ2/n

q

ymax − ymin
, ð4Þ

where n is the sample size, yi is the i
th observation of y, and ŷ

is the predicted y value.
Additionally a linear model II regression (ordinary least

products) was performed to test for fixed and proportional
bias with the total root length of 2017 data. We choose this
type of regression because the x-values might also be subject
to errors [41, 42]. For each measurement date and facility, a
model was fitted and the 95% confidence interval (95% CI)
of slope, and intercept was calculated. We considered a fixed
bias if the 95% CI of the intercept did not include 0 and
there was a proportional bias if the 95% CI of the slope did
not include 1.0.

The manual per image annotation with “Rootfly” of
2015/2016 data is no longer available. However, the images

Detected root-segments from RootPainter

(a) (b)

(c) (d)

Exported root-segments from RootPainter

Converted segments to binary Post-processing result of RhizoVision Explorer

Figure 2: Example for one image processed by the automated root analysis pipeline. (a) The roots are “detected” by RootPainter according
to the previous trained model. (b) The segmented image is exported and (c) converted to binary. (d) The last step is the skeletonization and
feature extraction with RhizoVision Explorer.
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and mean RLD values per tube are available and therefore
were used for comparison. Based on this, the RLD resulting
from automated and manual analysis methods was calcu-
lated for every minirhizotron tube and measurement date
(Figure S1) and compared as a proxy for a common root
measurement parameter [43]. In this analysis, all growing
periods 2015/2016 and 2017 were included.

3. Results

3.1. Neural Network Model Validation. The F1 for both neu-
ral network models trained for each camera system is high.
The F1 for the Bartz system is 0.78 and 0.81 for VSI system
model. After 60 epochs without any improvement, the neu-
ral network training was stopped automatically.

3.2. Comparison of Automated and Manual Annotation.
Considering all images used for comparison, the overall cor-
relation of total root length between manual annotation and
automated analysis pipeline is very high with r = 0:9.

The correlation was performed with 16,599 images taken
at RUT and 21,082 images taken at RLT. For the data
obtained in the growing period 2017, the correlation is high
to very high (r = 0:77 − 0:94) for every measurement date
except the first measurement date at RLT (r = 0:57)
(Figure 3). Generally, the correlation shows an increasing
trend towards later measurement dates (Table 2). ΔRL and
NRMSE indicate low values for most measurement dates at
both facilities. Regarding especially the ΔRL, it can be seen
that the differences in the mean between the manual annota-
tion and automated analysis pipeline in 2017 are very low
(-0.5mm (RUT) and -0.77mm (RLT)). However, the t test
indicates that there are no significant differences between
the mean of total root length except for measurement date
4 at RUT. The slope of the linear regression models is
slightly under one in most cases and the intercept marginally
higher than 0 for all measurement dates. Both fixed and pro-
portional bias were detected within almost every measure-
ment date (Table S2).

Regarding the RLD values from 2015/2016, one specific
difference between manual and automated analysis is visible.
Until the 14th measurement date, the RLD is continuously
increasing and then stagnating in the 2015/2016 data result-
ing from manual annotation. The RLD from the automated
analysis follows the same trend but decreases from 14th
measurement date continuously. Beyond this, the RLD
curves of both methods are very consistent (Figure 4). In
2017 datasets, only negligible differences between manual
and automated analysis method are recognizable, except
for the first measurement date at RLT (Figure 4(f),
Figure S2b) and first two dates and a small peak at the
fourth measurement at RUT (Figure 4(h)).

The comparison between two human annotators and
each annotator and the automated analysis pipeline sepa-
rately shows that the correlation between the person 1 and
the pipeline is r = 0:92 and the correlation between person
2 and the pipeline is r = 0:79. The correlation between both
persons is the lowest (r = 0:73).

3.3. Time Evaluation. The time required to train the neural
network model mostly depends on the amount of images
included in the training dataset. Approximately 65% of the
time needed is used for training of the deep neural network.
The annotation takes 40% of the time, based on a mean of
200 annotated images h −1. The range it took to annotate
one image was between 1 and 180 s per image, depending
on the accuracy of the proposed segmentation. The time
required for annotation decreases significantly with increas-
ing training time. The mean time needed by the network for
the training of a dataset of 1,500 images was approximately
5 h, excluding the real-time training during the annotation.
This is approximately 25% of the entire processing time.
Segmentation took around 27% of the total time. With 4
Nvidia GeForce RTX 2080 Ti GPUs and a batch size of 12,
the segmentation took around 0.7 s per image. Converting
the segmented to binary images and the final feature extrac-
tion took around 8% of the time (Figure 5).

4. Discussion

4.1. Availability and Feasibility. The availability is the
parameter for how easily accessible all components of the
automated pipeline are for everyone. The feasibility defines
how easy the proposed pipeline and with that the required
software can be operated. The equipment needed to apply
the new workflow requires a computer with a powerful
GPU, or alternatively a basic computer, an additional server
with powerful GPUs, and a network-connection between
both. Furthermore, the software packages of “RootPainter”
and “RhizoVision Explorer” are needed, and the conversion
and analysis script are required. All this is open-source avail-
able [17, 31]. All software can be found in the “Data
Availability.”

The training of the model requires interaction with
“RootPainter,” if the user wants to start the training of a
new model or corrects a segmentation within the training
process. This step is therefore not fully automated. All other
components of the automated analysis pipeline are auto-
mated. The interactive mode of the training represents a
major time saving compared to the conventional separation
of the training step and the application step. Adaptations to
the model can be done “on the fly” with little time invest-
ment, facilitating, e.g., the adaptation to new types of
images. Once the model is trained, the human interaction
needed to apply the pipeline is reduced to a few “clicks.”
With a suitable model available, the user has to interact
actively three times with the automated pipeline, (1) to start
the segmentation, (2) to convert the segments to binary, and
(3) to start the feature extraction. No deeper knowledge in
computer science is needed, because all intermediate steps
are available within a GUI. However, the first implementa-
tion of the “RootPainter” environment at the server part of
the setup requires basic knowledge in server administration
or support.

In contrast to manual or semiautomated operated root
analysis programs, like different tools based on “ImageJ,”
“DART,” “GiA Roots,” “SmartRoot,” “EZ-Rhizo,” or “Root-
fly,” the expenses in time, knowledge, and experiences
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required to apply the automated workflow are much lower.
This is granted due to the very small interactions needed
for the automated analysis pipeline [30, 44–47].

4.2. Accuracy and Comparability. The accuracy evaluates the
automated analysis pipeline in terms of reliability and exact-
ness of the generated data. Comparability is given, if the
results of the automated analysis pipeline can be compared
to the outcome of previously evaluated data of the same

kind, like the manual annotation performed with “Rootfly.”
The most important characteristic of the automation of
plant data analysis is the reliability of the generated datasets.
Therefore, the accuracy of the observed root traits has to be
as close to the ground truth as possible [5]. In our study, we
used the manual annotation of the roots as comparison. The
manual annotation was performed by different persons and
over a long time period. Consequently, a certain subjectivity
was included in this process.
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Figure 3: Correlation of automated and manual analyzed root length, obtained from 2017. Each measurement date is considered separately
for RUT and RLT. The color represents the density.
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Generally, the results for 2017 data analyzed automati-
cally and manually are very close to each other, indicating
a general great fit of the models used for images originating
from 2017.

However, there is a fixed and proportional bias between
automated analysis and manual annotation, showing a

minor but systematic underestimation of total root length
from the automated analysis (Table S2) that increases
slightly to the later measurement dates (see also the
negative ΔRL values in Table 1). This originates from the
fact that the neural network model is only able to segment
roots, if they are also visible by the human eye. Rarely,
small parts of roots are covered by soil, and this can only
be compensated to a certain extend by training the neural
network and filling holes with “RhizoVision Explorer”
(Figure S3). The more roots there are in the images, the
more likely this segmentation mistake occurs. Although
this is a disadvantage of the automated analysis pipeline,
its main purpose is to provide reliable and consistent data
for a qualitative biological analysis. The known systematic
bias in the method is well predictable in contrast to the
bias originating from different annotators. Consequently,
the data obtained from the automated analysis pipeline are
more robust and reliable, which is in advantage for further
biological conclusions drawn from the data.

The consistency of the automated analysis results
becomes especially visible regarding the RLD plots plotted
from 2015/2016 to 2017 data (Figure 4). The decrease in
2015/2016 RLD profiles that is not monitored in the manual
annotation data originated from the root senescence
(Figure S4). The senescence could be better evaluated by
the neural network than by the human annotator. In
manual annotation, the slight, gradual discoloration of the
roots visually revealing the senescence is easy to miss.
Furthermore, it is a complicated work step in “Rootfly” to
eliminate already annotated roots at the right point in the
timeline. Taking this into consideration, the results of the
method comparison for 2015/2016 and 2017 data show
impressive results, regarding the accuracy and comparability
of the automated analysis pipeline.

Regarding the biological conclusions that could be
derived from the data, the differences between the methods
are negligible, as we are working with minirhizotron data
that cover a huge spatial and temporal resolution and are
measured in heterogeneous conditions. Especially the con-
sistent low ΔRL and NRMSE (Table 2), as well as the high
conformity of the RLD profiles (Figure 4), indicate that the
qualitative conclusions derived from data provided by the
automated analysis pipeline and are at least the same as from
manual annotation. Considering the influence of the human
subjectivity on manual annotation, the automated pipeline
additionally provides objectivity that most likely cannot be
reached, if more than one annotator does the manual
annotation.

The manual annotation itself requires a certain level of
expertise in root phenotyping. This expertise is gained with
a lot of personal experiences [8, 14]. Therefore, it can be
hypothesized that there is also a significant influence of sub-
jectivity in human annotation. Over the years, different per-
sons annotated the root datasets. Hence, the impact of
differences resulting from varying manual annotation strate-
gies might influence the results more than the differences
between manual and automated analysis. The direct com-
parison between two annotators showed a lower correlation
between the persons annotating than between the automated

Table 2: Overview of the statistical comparison of automated and
manual annotation. ΔRL is the difference between the mean total
root length (mm) obtained from automated and manual analysis
methods, and a Welsch two sample t test shows whether
differences are significant (∗p < 0:01).

Measurement date
2017

RUT RLT

1

ΔRL 0.45 0.42

NRMSE 0.071 0.077

r 0.92 0.53

2

ΔRL 0.89 1.17

NRMSE 0.071 0.053

r 0.78 0.83

3

ΔRL 0.95 0.54

NRMSE 0.057 0.052

r 0.83 0.92

4

ΔRL 2.94∗ 0.65

NRMSE 0.051 0.055

r 0.88 0.9

5

ΔRL 1.36 0.92

NRMSE 0.041 0.072

r 0.9 0.87

6

ΔRL 1.35 1.7

NRMSE 0.044 0.065

r 0.9 0.84

7

ΔRL -1.46 1.8

NRMSE 0.046 0.058

r 0.88 0.93

8

ΔRL 0.11 0.55

NRMSE 0.045 0.073

r 0.86 0.89

9

ΔRL -1.41 -0.97

NRMSE 0.039 0.057

r 0.88 0.94

10

ΔRL -2.44 -2.89

NRMSE 0.039 0.047

r 0.88 0.92

11

ΔRL 0.65

NRMSE 0.065

r 0.92
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Figure 4: Comparison of RLD of the date obtained from images originating from two minirhizotrons in the growing season 2015/2016 and
2017, separated by plots grown with different treatments. The images were analyzed by hand (blue: manual) and by the automated analysis
pipeline (red: automated). 2015/2016: (a) RUT manual, (b) RUT automated, (c) RLT manual, and (d) RLT automated. 2017: (e) RUT
manual, (f) RUT automated, (g) RLT manual, and (h) RLT automated.
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analysis pipeline and each human annotator. Consequently,
we concluded that the human effect on manual annotation is
higher than the impact of a mistake done by the automated
workflow.

The automated analysis pipeline provides a level of
objectivity, a human annotator cannot achieve. Therefore,
it is highly probable that with the application of the auto-
mated pipeline associated minimization of the human influ-
ence will significantly improve objectivity and also accuracy
of the minirhizotron image analysis.

4.3. Speed and Efficiency. The speed is the pure amount of
time the pipeline requires to analyze a certain amount of
images. Efficiency is defined through the amount of time
and labor needed to analyze a dataset in contrast to manual
annotation. The time required to analyze root images by
hand is enormous. The estimated time to analyze 100 cm2

of depicted soil is 1-1.5 h [17]. This is consistent with the
results of other studies, needing approximately 1 h for anno-
tating 17-38 images manually [16]. Intern evaluation repro-
duced the same results. To annotate 25,000 images, which is
approximately the amount of images for a shorter growing
season, the annotation time needed is 1,000-1,500 h. The
time needed to process the same amount of images with
the automated pipeline is approximately 19h, including the
training of the neural network. Without the training, the
segmentation and feature extraction would only take around
6.5 h for all images. The resulting benefits in time saving are
massive (Figure 5). Generally, only around 1.2%-1.9% of the
time needed for manual annotation is needed by the auto-
mated workflow to process the data, including the training.
Excluding the entire training process, the automated work-
flow requires only 0.4%-0.65% of the time needed to anno-
tate the same amount of images manually with, e.g.,
“Rootfly.” Regarding the advantages of time saving, it further
has to be taken into account that the time of interaction with
the computer is decimated to almost zero, once the training
is completed.

4.4. Limitations and Further Improvement. Although the
current automated analysis pipeline does include time series
in form of either root length density depth profiles at differ-
ent time points or in form of root arrival curves, i.e., root

length as a function of time at different depths, individual
roots and their phenology are not followed from their birth
to their death. This could be of high interest, for example,
to root ecologists. To fully exploit minirhizotron data, it
would be a significant progress to add a single root tracking
possibility, including root order and status. The implemen-
tation of these functions would improve the pipeline and
enhance the use cases for root ecologists.

5. Conclusion

We propose a new approach to analyze large amounts of 2D
root image data. This became necessary with the big amount
of data created in experimental field sites such as the mini-
rhizotron facilities in Selhausen (Germany) as well as others
[48, 49]. The automated analysis pipeline illustrated in this
study is a suitable solution to easily and accurately analyze
minirhizotron images in significantly less time. To the best
of our knowledge, we are the first study testing a deep learn-
ing and automated feature extraction combining high-
throughput minirhizotron image analysis pipeline to this
extent. The biggest advantage of the automated workflow is
the massive saving in time. Precisely expressed, the required
time is reduced by more than 98% in contrast to manual
annotation, while providing several root traits, including
number of root tips, number of branch points, root length,
branching frequency, network area, perimeter, volume, sur-
face area, and diameter on a spatiotemporal scale. The
required root traits can be made available quickly which
may speed up further analysis and applications of this type
of data. In conclusion, the automated pipeline outperforms
the manual annotation in time requirements and informa-
tion density, while providing reliable data and feasibility
for everyone. Tested with more than 107,000 minirhizotron
images, including more than 36,500 images for detailed
comparison, obtained from two growing seasons and differ-
ent soil types, depths and cultures our results indicate a high
general validity for the presented pipeline. Irregularities in
the match of manual annotation and analysis pipeline can
be essentially explained with rarely occurring missed seg-
mentations of root fragments by the automated analysis
pipeline, due to soil covered roots and mainly by the influ-
ence of human subjectivity in manual annotation. Balanced

Training12.5 h
4.9 h

0.6 h 1.0 h

Feature extraction
Finish network training

5.0 h

7.5 h

Annotation

Binary converting

Segmentation

Figure 5: Time requirements to run the automated analysis pipeline for a sample of 25,000 images. (a) All subprocesses together. (b) Share
of the neural network training, which is only required when no suitable model is available.
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training datasets and consequent annotation of the training
data are the key to good results. If these facts are consid-
ered, the here presented and evaluated pipeline has the
potential to be the new standard method for reliable high-
throughput root phenotyping of minirhizotron images.

Data Availability

(i) The supplementary data that support the findings of this
study and help to operate the in this work introduced root
image analysis pipeline, including an example, are open
available. Furthermore, data and scripts to reproduce the
RLD profiles (Figure 4) and RAC-curves (Figure S2) are
open to access with the same identifier: doi:10.34731/pbn7-
8g89. (ii) [29] is available at: https://github.com/Abe404/
root_painter. (iii) RhizoVision Explorer [31, 40] is
available at: https://zenodo.org/record/4095629 and https://
github.com/rootphenomicslab/RhizoVisionExplorer
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Figure S1: 3D spatiotemporal distribution of RLD measured
in all tubes at one minirhizotron. Distances between tubes
are not to scale. 1-8 represents the time steps. Figure S2:
Comparison of root arrival curves of the data obtained from
images originating from two minirhizotrons in the growing

season 2017. The images were analyzed by hand (left: man-
ual) and by the automated analysis pipeline (right: auto-
mated). 2017: (a) RUT manual, (b) RUT automated, (c)
RLT manual, and (d) RLT automated. Figure S3: Manual
vs. automated analysis. The automated analysis misses a
small part of the root and underestimates the total root
length slightly. Figure S4: Root senescence visible from early
to late measurement dates in the growing season 2015/16
and the corresponding segmentation and skeletonization.
Table S1: Detailed overview of the images taken at the grow-
ing season 2015/2016 and 2017 Table S2: Comparison of the
automated analysis pipeline and the manual annotation of
the total root length obtained in the growing season 2017
with a linear regression. The confidence interval (95%) of
the regression coefficient (ordinary least products) are listed
in parenthesis. The bias is fixed if the 95% CI of the intercept
do not include 0 and the bias is proportional if the 95% CI of
the slope do not include 1. (Supplementary Materials)
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