000911251 001__ 911251
000911251 005__ 20230113085412.0
000911251 0247_ $$2doi$$a10.1007/s42729-022-00919-4
000911251 0247_ $$2ISSN$$a0717-635X
000911251 0247_ $$2ISSN$$a0718-2791
000911251 0247_ $$2ISSN$$a0718-9508
000911251 0247_ $$2ISSN$$a0718-9516
000911251 0247_ $$2Handle$$a2128/33354
000911251 0247_ $$2WOS$$aWOS:000835156800003
000911251 037__ $$aFZJ-2022-04547
000911251 082__ $$a570
000911251 1001_ $$0P:(DE-HGF)0$$aSuazo-Hernández, Jonathan$$b0
000911251 245__ $$aCombined Effect of Soil Particle Size Fractions and Engineered Nanoparticles on Phosphate Sorption Processes in Volcanic Soils Evaluated by Elovich and Langmuir–Freundlich Models
000911251 260__ $$a[Cham]$$bSpringer International Publishing$$c2022
000911251 3367_ $$2DRIVER$$aarticle
000911251 3367_ $$2DataCite$$aOutput Types/Journal article
000911251 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672819327_27125
000911251 3367_ $$2BibTeX$$aARTICLE
000911251 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911251 3367_ $$00$$2EndNote$$aJournal Article
000911251 520__ $$aEngineered nanoparticles (ENPs) released into the environment can affect phosphate (Pi) availability in soils. In this study, we evaluated the effect of silver (Ag) or copper (Cu) ENPs (3 and 5%, w/w) on Pi sorption processes in soil particle size fractions. The 2000–32 μm, 32–2 μm, and < 2 μm fractions were obtained from an agricultural volcanic soil by wet-sieving and sedimentation methods. The Elovich kinetic and Langmuir–Freundlich (L-F) isotherm models were used to describe the adsorption data obtained from batch experiments. The initial adsorption rate (α) was determined from the Elovich model to be 105% higher for the 2000–32 μm fraction and 203% higher for the 32–2 μm fraction than for the < 2 μm fraction (671 mmol kg−1 min−1). Meanwhile, with both doses of Cu ENPs, the α values are increased for the soil size fractions, resulting in the formation of adsorption sites for Pi. However, with Ag ENPs, the α values are both increased and decreased for the different soil fractions; therefore, they can block or generate adsorption sites. The maximum adsorption capacity (qmax) was determined from the L-F model to be 17% higher for the 32–2 μm fraction and 47% higher for the < 2 μm fraction compared to that for the 2000–32 μm fraction (180 mmol kg−1). With both ENPs, the qmax values are found to be between 1.1 and 1.9 times higher with respect to the 2000–32 μm fraction without ENPs. In the absence of ENPs, the highest Pi desorption was found in the 32–2 μm fraction followed by 2000–32 μm fraction, and finally < 2 μm fraction. Moreover, the Pi desorption decreased for soil size fractions with increasing Ag or Cu ENPs content, which was found to be more pronounced in the 32–2 μm fraction in the presence of Cu ENPs. The presence of Ag and Cu ENPs increases Pi retention in soil size fractions, which can decrease soil fertility. Thus, future studies are recommended to find out the critical amounts of ENPs, which may favor Pi retention without any negative effects on agricultural soils.
000911251 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000911251 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911251 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, Erwin$$b1
000911251 7001_ $$0P:(DE-HGF)0$$aArancibia-Miranda, Nicolás$$b2
000911251 7001_ $$0P:(DE-HGF)0$$aJara, Alejandra$$b3
000911251 7001_ $$0P:(DE-HGF)0$$aPoblete-Grant, Patricia$$b4
000911251 7001_ $$0P:(DE-HGF)0$$aSepúlveda, Pamela$$b5
000911251 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b6$$eCorresponding author
000911251 7001_ $$0P:(DE-HGF)0$$ade la Luz Mora, María$$b7
000911251 773__ $$0PERI:(DE-600)2611093-3$$a10.1007/s42729-022-00919-4$$gVol. 22, no. 3, p. 3685 - 3696$$n3$$p3685 - 3696$$tJournal of soil science and plant nutrition$$v22$$x0717-635X$$y2022
000911251 8564_ $$uhttps://juser.fz-juelich.de/record/911251/files/JSSP-D-21-01242_R2postprint.pdf$$yPublished on 2022-12-02. Available in OpenAccess from 2023-12-02.
000911251 8564_ $$uhttps://juser.fz-juelich.de/record/911251/files/s42729-022-00919-4.pdf$$yRestricted
000911251 909CO $$ooai:juser.fz-juelich.de:911251$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129484$$aForschungszentrum Jülich$$b1$$kFZJ
000911251 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b6$$kFZJ
000911251 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000911251 9141_ $$y2022
000911251 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000911251 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000911251 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SOIL SCI PLANT NUT : 2019$$d2021-02-02
000911251 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000911251 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-02$$wger
000911251 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000911251 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000911251 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2021-02-02
000911251 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000911251 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000911251 920__ $$lyes
000911251 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000911251 980__ $$ajournal
000911251 980__ $$aVDB
000911251 980__ $$aUNRESTRICTED
000911251 980__ $$aI:(DE-Juel1)IBG-3-20101118
000911251 9801_ $$aFullTexts