000911272 001__ 911272
000911272 005__ 20240313103134.0
000911272 0247_ $$2doi$$a10.3389/fnint.2022.974177
000911272 0247_ $$2Handle$$a2128/32883
000911272 0247_ $$2pmid$$a36310714
000911272 0247_ $$2WOS$$aWOS:000876753200001
000911272 037__ $$aFZJ-2022-04568
000911272 041__ $$aEnglish
000911272 082__ $$a610
000911272 1001_ $$0P:(DE-HGF)0$$aOberländer, Jette$$b0
000911272 245__ $$aLearning and replaying spatiotemporal sequences: A replication study
000911272 260__ $$c2022
000911272 3367_ $$2DRIVER$$aarticle
000911272 3367_ $$2DataCite$$aOutput Types/Journal article
000911272 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1669792099_12148
000911272 3367_ $$2BibTeX$$aARTICLE
000911272 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911272 3367_ $$00$$2EndNote$$aJournal Article
000911272 520__ $$aLearning and replaying spatiotemporal sequences are fundamental computations performed by the brain and specifically the neocortex. These features are critical for a wide variety of cognitive functions, including sensory perception and the execution of motor and language skills. Although several computational models demonstrate this capability, many are either hard to reconcile with biological findings or have limited functionality. To address this gap, a recent study proposed a biologically plausible model based on a spiking recurrent neural network supplemented with read-out neurons. After learning, the recurrent network develops precise switching dynamics by successively activating and deactivating small groups of neurons. The read-out neurons are trained to respond to particular groups and can thereby reproduce the learned sequence. For the model to serve as the basis for further research, it is important to determine its replicability. In this Brief Report, we give a detailed description of the model and identify missing details, inconsistencies or errors in or between the original paper and its reference implementation. We re-implement the full model in the neural simulator NEST in conjunction with the NESTML modeling language and confirm the main findings of the original work.
000911272 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000911272 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000911272 536__ $$0G:(DE-Juel1)aca_20190115$$aAdvanced Computing Architectures (aca_20190115)$$caca_20190115$$fAdvanced Computing Architectures$$x2
000911272 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x3
000911272 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x4
000911272 536__ $$0G:(GEPRIS)491111487$$aOpen-Access-Publikationskosten Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x5
000911272 7001_ $$0P:(DE-Juel1)176778$$aBouhadjar, Younes$$b1$$eCorresponding author
000911272 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b2$$ufzj
000911272 773__ $$0PERI:(DE-600)2452962-X$$a10.3389/fnint.2022.974177$$p113$$tFrontiers in integrative neuroscience$$v16$$x1662-5145$$y2022
000911272 8564_ $$uhttps://juser.fz-juelich.de/record/911272/files/fnint-16-974177.pdf$$yOpenAccess
000911272 8767_ $$d2022-12-27$$eAPC$$jDeposit$$z1572,5 USD
000911272 909CO $$ooai:juser.fz-juelich.de:911272$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000911272 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000911272 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176778$$aForschungszentrum Jülich$$b1$$kFZJ
000911272 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b2$$kFZJ
000911272 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000911272 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000911272 9141_ $$y2022
000911272 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000911272 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911272 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000911272 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000911272 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911272 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000911272 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT INTEGR NEUROSC : 2021$$d2022-11-11
000911272 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000911272 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000911272 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T10:28:29Z
000911272 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T10:28:29Z
000911272 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T10:28:29Z
000911272 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000911272 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000911272 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000911272 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911272 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000911272 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000911272 920__ $$lyes
000911272 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000911272 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000911272 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000911272 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x3
000911272 9201_ $$0I:(DE-Juel1)PGI-10-20170113$$kPGI-10$$lJARA Institut Green IT$$x4
000911272 9801_ $$aFullTexts
000911272 980__ $$ajournal
000911272 980__ $$aVDB
000911272 980__ $$aUNRESTRICTED
000911272 980__ $$aI:(DE-Juel1)INM-6-20090406
000911272 980__ $$aI:(DE-Juel1)IAS-6-20130828
000911272 980__ $$aI:(DE-Juel1)INM-10-20170113
000911272 980__ $$aI:(DE-Juel1)PGI-7-20110106
000911272 980__ $$aI:(DE-Juel1)PGI-10-20170113
000911272 980__ $$aAPC
000911272 981__ $$aI:(DE-Juel1)IAS-6-20130828