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ABSTRACT
Hopfions are an intriguing class of string-like solitons, named according to a classical topological concept classifying three-dimensional
direction fields. The search for hopfions in real physical systems has been ongoing for nearly half a century, starting with the seminal work
of Faddeev. However, so far, realizations in bulk solids are missing. Here, we show that hopfions appear as emergent particles of the classical
Heisenberg model with competing exchange interactions. This requires going beyond the model approach used in prior work and deriving
a general micromagnetic energy functional directly from a spin-lattice Hamiltonian. We present a definite parameter space in which the
existence of hopfions is possible. This opens a concrete vista to combine computational approaches such as density functional theory with
material informatics to find magnetic crystals that can host hopfions. As proof of principle, we show how zero-field hopfions can be visualized
by the means of off-axis electron holography in a transmission electron microscope.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0099942

I. INTRODUCTION

Topological solitons1,2 are localized finite energy solutions to
classical non-linear field equations appearing in many fields of sci-
ence, from nuclear physics3 to cosmic string theory.4 Topological
solitons are characterized by their ability to move and interact with
each other as ordinary particles. They are one answer to Heisenberg’s
question how countable particles can appear in continuous fields.
Recent celebrated examples in condensed matter are magnetic chiral
skyrmions,5–8 two-dimensional vortex-like field configurations in
magnets without inversion symmetry, which have received consider-
able interest as fundamental objects as well as promising candidates
for future spintronic applications.9 In contrast, models, which allow
three-dimensional (3D) topological solitons,2,10 to which we shall
refer to as hopfions according to a classical topological concept due

to Hopf,11 seem very rare in nature. It is worth mentioning that the
term “hopfion” is often used for the states characterized by variants
of the Hopf map.11–13 Such textures resembling Hopf fibration were
experimentally observed in liquid crystals,14–19 Bose–Einstein con-
densate,20 and magnetic multilayers21 and theoretically predicted
in ferromagnetic chiral magnets,22–27 antiferromagnetic frustrated
chiral magnets,28 and ferroelectrics.29

The first statically stable magnetic hopfions have been reported
by Bogolubsky in Refs. 30 and 31, where an isotropic micromagnetic
model possessing O(3) symmetry with higher-order derivatives of
the order parameter has been used. The hopfion solutions found by
Bogolubsky are stable at zero applied field when the ground state
of the system represents a collinear ferromagnetic state. Recently,
Sutcliffe has shown that hopfion solutions for isotropic frustrated
magnets described by O(3) symmetric Hamiltonian can also be
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stabilized in a strong external magnetic field that breaks the sym-
metry and suppresses the exchange spirals representing the ground
state of the system.32

Here, we identify the spatially isotropic functional used in
Refs. 30–32 as a degenerate case of a more general micromagnetic
functional necessary to describe magnetic texture of crystals with
competing exchange interactions and cubic symmetry. We present
this advanced micromagnetic functional derived from spin-lattice
Hamiltonian for simple, face-centered, and body-centered cubic lat-
tices. Following our approach, similar functionals can be derived
for materials of arbitrary crystal symmetry.33 In addition to the
presented hopfion solutions, we also provide a criterion for the exis-
tence of hopfions in the systems described by such a micromagnetic
functional and give an estimate of a typical real space dimen-
sions of such hopfions. This criterion is based on single inequality,
where all variables can be deduced from quantum mechanical mod-
els of solids typically with the help of density functional theory
(DFT).34 Such a computational materials science approach opens

a multiscale vista for the discovery of hopfions in real materials
by bridging quantum mechanics to higher-level materials specific
models.

Topological solitons occur if the order parameter takes values
in a curved manifold, e.g., a Lie group or a magnetization sphere S2.
In this case, the topological concept of homotopy may be used to dis-
tinguish certain classes of field configurations from the topologically
trivial uniform state. More precisely, for field configurations rep-
resenting a topological soliton, there is no continuous deformation
(homotopy) to any collinear (constant) field configuration.

In case of magnetic hopfions, the relevant order parameter
of the system is a unit vector field n(r) = (nx, ny, nz), ∣n(r)∣ = 1,
defined at any point r ∈ R3. Field configurations n attaining a uni-
form background state at infinity n(r) → n0 as ∣r∣ → ∞ can be
classified according to the linkage of their fibers {n = p}, which, for
regular values p ∈ S2, are collections of closed loops in R3. Examples
of simple and more intricate hopfion configurations are illustrated
in Fig. 1.

FIG. 1. Typical structures of hopfions. (a) Toroidal hopfion with Hopf index H = 1. The solid colored isolines connect points r of a vector field n(r)
= (cos Φ sin Θ, sin Φ sin Θ, cos Θ) with fixed values of angular variables, Θ ≡ Θ(r) and Φ ≡ Φ(r). The color of the vectors and the corresponding isolines is defined by
the angular parameter Φ, and together they compose the isosurface Θ = const. (b) and (c) Texture of toroidal hopfion at intersecting planes z = 0 and x = 0, respectively.
(d)–(f) Isosurfaces Θ = const for toroidal hopfion with H = 2, for two linked toroidal-like hopfions with total H = 6, and for hopfion with trefoil knot-like shape with H = 7.
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The Hopf invariant H = H(n) of a field n onto S2 is defined as
the linking number of two generic fibers, i.e., the oriented number
of times fibers wind around each other. The crucial point is that H is
a classifying homotopy invariant. The existence of a homotopically
non-trivial map with unit H, nowadays known as Hopf fibration,
is a classical result due to Hopf11 in 1931 also emerging implicitly
in Dirac’s work on quantized singularities of the same year.35 Hop-
fions are topological solitons of non-zero Hopf invariants, whose
existence or non-existence relies on the structure of the governing
energy functional.

It has generally been believed that in magnetically ordered
crystals, 3D textures may only arise as precessing or moving
states,36–38 while energy dissipation processes eventually lead to
instability. In certain cases, the dynamical states under the influence
of various external stimuli such as electric current or AC magnetic
fields can be stabilized on a quite long time scale.39,40 Here, we do not
consider such dynamic states and study the statically stable solutions
only.

In contrast to the classical Skyrme model,3 the energy density of
the conventional micromagnetic theory,41 ℰ∝ ∣∇n∣2 ≡ ∑α(∇nα)2,
where α ∈ {x, y, z}, lacks stabilizing terms, either in form of higher
powers of derivatives of the magnetization density, n(r), or higher
order derivatives. Below, we show that energy functionals incor-
porating such terms can be derived from the classical isotropic
Heisenberg model. This model is microscopically defined through
the following Hamiltonian:

ℋ = −∑
i>j

𝒥ij ni ⋅nj, (1)

which describes an exchange interaction between magnetic spin
moments μ located on atomic sites i and j, where n are unit vectors,
n = μ/∣μ∣. ∑i>j indicates the summation over all pairs of interact-
ing spins. Here, we go beyond typical model approaches where the
strength of pair interactions 𝒥ij(rij) is set to zero at the distances
above a particular value. We take into account both cases when the
absolute values of 𝒥ij(rij) decay with the distance between spins as
well as the case when 𝒥ij(rij) do not vanish or decay very slowly with
the distance, which is typical for some metals.42 Of interest to us are
systems with competing ferro- and antiferromagnetic interactions
as a function of distance. The various potential energy terms such as
magnetocrystalline anisotropy or Zeeman energy can be taken into
account. However, as shown in Sec. II, they are not required for the
stability of hopfions.

II. RESULTS
A. Advanced micromagnetic functional

We consider crystals with cubic Bravais lattices: simple (sc),
body-centered (bcc), and face-centered (fcc). For a correct con-
tinuum representation [ni → n(r)] of the spin-lattice Hamiltonian
(1), which is able to reflect the essence of the competing exchange
interactions, we go beyond the conventional micromagnetic approx-
imation and take into account the higher order terms in the series
expansion (see Sec. 1 of the supplementary material for details). We
obtain the advanced micromagnetic energy functional

E =∫
R3

𝒜∑
α
(∂n
∂rα
)

2
+ℬ ∑

α,β≠α

⎛
⎝
∂2n
∂r2

α
− ∂2n

∂r2
β

⎞
⎠

2

+𝒞 ∑
α,β≠α
( ∂2n
∂rα∂rβ

)
2

dr,

(2)
where each index runs over x, y, and z. The derivation provides
linear relations between micromagnetic and exchange constants Js,
symmetry equivalent representatives of 𝒥ij,

𝒜 = (1/a)∑
s

asJs, ℬ = −a∑
s

bsJs, 𝒞 = −a∑
s

csJs, (3)

where a is the lattice constant. The positive coefficients as, bs,
and cs depend on the crystal lattice type (see Tables S1–S3 of the
supplementary material and Ref. 33).

For real materials, the micromagnetic constants 𝒜 ,ℬ , and
𝒞 can be obtained either experimentally measuring spin-wave spec-
tra along different crystallographic directions or using density func-
tional theory (DFT) calculating the energy density for flat spin spiral
textures,43 ns = (cos(q ⋅ r), sin(q ⋅ r), 0), with the wave vector q,
which reads

ℰs = 𝒜 q2 +
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
3
𝒞 q4 (q∥[111]),

4ℬ q4 (q∥[100]).
(4)

Figure 2 illustrates that, in contrast to conventional ferromagnets
characterized by a quadratic dispersion relation ℰs ∼ q2, functional
(2) features a quartic behavior of ℰs near the Γ-point along at least
one of the high-symmetry directions.

For negative ℬ or 𝒞 , the energy density (4) is unbounded
from below when q→∞, which indicates the tendency of the system
to antiferromagnetic order where functional (2) becomes irrelevant.
The occurrence of antiferromagnetic hopfions, which are allowed by

FIG. 2. Examples of the dispersion curves for conventional magnets and for those
that are able to host hopfions. (a) Example of the energy density dependency for
the flat spin spirals with the wave vector along high symmetry directions of the
cubic crystal for classical ferromagnet. (b) and (c) Examples of same dependen-
cies for the systems that are able to host magnetic hopfions. Dashed lines show the
fit for the dispersion curves near the Γ point. Inset in (c) shows possible behavior
of ℰs shown in (b) and (c) in the close vicinity to the Γ point. For 𝒜 > 0 (dashed
line) and for 𝒜 < 0 (solid line), the global minimum corresponds to the collinear
state (q = 0) and spin spiral state (q ≠ 0), respectively.
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the spin-lattice model (1), will be considered elsewhere, while below
we assume that ℬ ≥ 0, 𝒞 ≥ 0, and ℬ +𝒞 > 0.

B. A degenerate case leading to spatial
isotropy, 𝓒 = 6𝓑

In the particular case of 𝒞 = 6ℬ , functional (2) describes a
spatially isotropic system and can be reduced to a simple form

E iso =∫
R3

𝒜 ∣∇n∣2 + 4ℬ ∣Δn∣2dr, (5)

where Δ = ∇2 denotes the Laplacian. We refer to this particular case
as the model of Bogolubsky,30,31 who first reported on the hopfion
as a statically stable solution of (5) for 𝒜 > 0. Recently, in Ref. 32,
for a particular case of model (5) when 𝒜 < 0, hopfions stabilized by
an external magnetic field were reported. Notably, functional (5) has
been also considered in framework of a pure 2D model with 𝒜 > 0
in Ref. 44 and with 𝒜 < 0 in Ref. 45. Note that functional (5) can be
written in the following equivalent form:

E iso =∫
R3

𝒜 ∣∇n∣2 + 4ℬ∑
α,β
( ∂2n
∂rα∂rβ

)
2

dr. (6)

C. Minimal effective model
There are two straightforward approaches that allow one to

find hopfion solutions for particular material parameters. The first
approach is based on direct energy minimization of the correspond-
ing spin-lattice Hamiltonian (1). This approach requires the exact
values of the exchange coupling constants 𝒥ij(rij), which can gener-
ally be found by DFT methods. An obvious obstacle in this approach
is the case when a set of 𝒥ij(rij) represents an infinite series. The
second approach assumes an energy minimization of the micromag-
netic functional (2), for instance, employing various finite-difference
schemes. In this case, the material parameters 𝒜 , ℬ , and 𝒞 can be
extracted from dispersion curves (Fig. 2). The main disadvantage of
this approach is that the chosen type of finite-difference scheme and
the density of the discrete mesh affect the precision and performance
of the numerical calculations. Implementating a finite-difference
scheme for the functional containing forth order terms may
prove computationally less efficient than the approach discussed
below.

For an efficient numerical approximation of hopfion solutions
for the advanced micromagnetic functional, we propose a min-
imal effective model based on a spin-lattice Hamiltonian for a
simple cubic lattice, where each spin interacts with four types of
neighbors—the first four shells. The constants of these exchange
interactions are denoted by J̃1,2,3,4 and may be adapted to the
effective micromagnetic constants 𝒜 , ℬ , and 𝒞 .

Let us consider the following example. Suppose, a mag-
netic crystal has fcc cubic symmetry with the lattice constant
afcc = 0.4 ⋅ 10−9 m. Let us assume that the material parameters are
𝒜 = 1.5 ⋅ 10−14 J m−1, ℬ = 0.8 ⋅ 10−32 J m, and 𝒞 = 5.2 ⋅ 10−32 J m.
In this case, those exact values of 𝒥ij(rij) of the corresponding
Heisenberg model (1) are not essential for finding the solutions.
The constants 𝒜 , ℬ , and 𝒞 can be found either from their rela-
tions to 𝒥ij(rij) provided in Tables S1–S3 of the supplementary

material or can be directly extracted from the experimental or
theoretical dispersion curves (Fig. 2).

Let us now consider a simple cubic lattice with the lattice
constant ã = a fcc and coupling constants J̃1,2,3,4, which give the same
material parameters 𝒜 , ℬ , and 𝒞 . According to (3) and Table
S1 of the supplementary material, these constants must satisfy the
following system of equations:

𝒜 = 1
ã
(1

2
J̃1 + 2̃J2 + 2̃J3 + 2̃J4),

ℬ = −ã( 1
96

J̃1 +
1

24
J̃2 +

1
24

J̃3 +
1
6

J̃4),

𝒞 = −ã( 1
48

J̃1 +
1
3

J̃2 +
7

12
J̃3 +

1
3

J̃4).

(7)

It is also necessary to take into account an additional constraint that
guarantees that the ferromagnetic state is lower in energy than the
antiferromagnetic state; therefore,

6̃J1 + 8̃J3 > 0. (8)

For the considered example here, one can choose J̃1 = 10−21 J
(≈6.2 meV), J̃2 = 0.188̃J1, J̃3 = −0.274̃J1, and J̃4 = −0.161̃J1. It is easy
to show that this set of J̃1,2,3,4 satisfies (7) and (8). The results of
direct energy minimization of such an effective model with those
parameters J̃1,2,3,4 will correspond to the solution of both micromag-
netic functional (2) and the corresponding Heisenberg model (1) of
the fcc crystal.

In the case of a simple cubic crystal with nonzero exchange
interactions only in the first four shells, the minimal effective model
is exactly the Heisenberg model (1). Below, whenever we refer to
the results obtained with the minimal effective model, we use a tilde
symbol for the exchange interaction constants.

D. The case of ferromagnet (𝓐 > 0)
1. Hopfion diversity

For positive 𝒜 , the energy density in (2) is non-negative
and provides a true extension of a conventional ferromagnet
governed by ℰ∝ ∣∇n∣2. In this case, functional (2) satisfies the
Derrick–Hobart criterion1 necessary for the existence and stability
of solutions localized in 3D space. From a mathematical perspective,
the advanced micromagnetic model features striking analogies with
the Skyrme–Faddeev model.46 The latter one is accompanied by a
well-established theory on the occurrence of string-like solitons.

By means of the effective model introduced in Sec. II C, we
have found a wide spectrum of solutions with different Hopf indices.
Figure 3 illustrates hopfions for the limiting cases 𝒞 = 0, 𝒞 = 6ℬ ,
and ℬ = 0. The axial symmetry of the toroidal hopfions with Hopf
indices H = 1, 2 reflects the isotropic structure of functional (2) in
case of 𝒞 = 6ℬ . Note that the hopfion solution with H = 1 for the
particular case of 𝒞 = 6ℬ was first suggested by Bogolubsky.30 The
numerical solution in Ref. 30 was found by energy minimization of
the spin-lattice Hamiltonian, which is conceptually similar to our
minimal effective model (see Sec. II C). In particular, the calculations
were performed for a simple cubic lattice with four shells, J̃1 = 61,
J̃2 = −10, J̃3 = 0, and J̃4 = −5, which corresponds 𝒞 ≈ 6ℬ . This set
of parameters has also been used in the simulations of dynamics of
magnetic hopfions.47
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FIG. 3. Morphology of magnetic hop-
fions. Shown magnetization fields are
energy minimizer of corresponding
homotopy classes defined by the Hopf
index H. Each row illustrates isosurfaces
with Θ = π/2 (nz = 0). Note that the
complexity of the hopfion shape and
size increases with the Hopf index. For
𝒞 = 6ℬ , the hopfion with H = 6 is
similar to the linked tori state, while
for 𝒞 = 0 and ℬ = 0, the hopfion
with H = 7 is similar to trefoil knot [see
Fig. 1(f)].

2. The relationship between energy
and topological charge

By applying mathematical transformations, we show that (2)
is bounded from below by a variant of the Skyrme–Faddeev func-
tional (the details are provided in Sec. 5 of the supplementary
material). The latter one has a topological lower bound, also known
as Vakulenko–Kapitanski inequality.46 After adapting constants,48,49

we find

E ≥ η∣H∣
3
4 , (9)

with an explicit constant η = (32π2/31/8)
√

2𝒜 min(𝒞 , 6ℬ), which
is not expected to be optimal. This lower energy bound can be
matched qualitatively by suitable trial configurations of the pre-
scribed Hopf invariant as in Ref. 50, proving the previously men-
tioned fractional energy law. During completion of this work, we
became aware of the work51 reporting similar results related to
energy bounds but for the case 𝒜 < 0, which is not considered here.

The behavior of the numerical solutions for hopfions with
different Hopf indices confirms the fractional power law for min-
imal energies E ∼ ∣H∣3/4 (see Fig. 4). By virtue of the arguments in
Ref. 52, the sublinear energy growth essentially implies the attain-
ment of minimal energies in infinitely many homotopy classes.
Such behavior of the energy of hopfions with increasing topo-
logical index is in contrast to the 2D systems. The linear energy
growth for positive topological charge Q is a crucial element in the
rigorous proof of minimal energy attainment for chiral skyrmion
with Q = −1.7 In contrast to Belavin–Polyakov solutions,53 how-
ever, the energy bounds are only attained approximately by col-
lapsing Belavin–Polyakov lumps. It is also interesting to note that
the physics of two-dimensional skyrmions with diverse topological
charges can be quite different.54

3. Criterion for the occurrence of hopfions
The characteristic scale of inhomogeneity, l0, which can be seen

as a measure of smoothness of the hopfion’s vector field, represents

an important parameter related to the stability of such states in the
spin-lattice model. We define l0 as

l0 = min( ∣r2 − r1∣
∠(n2, n1)

), (10)

where n2 and n1 are vectors at arbitrary positions r2 and r1, respec-
tively, and ∠(n2, n1) is angle between these vectors. The charac-
teristic scale, l0, can be assumed to be nearly independent on Hopf

FIG. 4. The energy of hopfions with different Hopf indices. The energy of stable
3D soliton solutions as a function of the Hopf index. Hopfions have been
numerically calculated in the effective spin-lattice model with exchange coupling
constants corresponding to three special cases: ℬ = 0, 𝒞 = 0, and 𝒞 = 6ℬ .
The inset shows the same dependencies given in logarithmic scale reproduc-
ing the power law E ∼ ∣H∣3/4. Parameter η∗ = 389.3⋅

√

𝒜 ⋅ max(𝒞 , 6ℬ ) is
defined from the fit to the numerical calculations. The morphology of solitons
corresponding to each point is presented in Fig. 3.
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index, H, while all hopfions can be decomposed on similar structural
elements (for details, see Sec. 6 of the supplementary material). The
characteristic scale of inhomogeneity was estimated analytically by
analyzing the structure of an infinite hopfion. This technique is
based on the approach proposed by Faddeev2 in which the hop-
fion is considered as a twisted and looped skyrmion tube (see also
Refs. 55 and 56). For some σ-models,48,49 this approach allows us
to perform an exact analytical analysis assuming that the length of
such a closed tube tends to infinity. We adapted this technique for
the case of the spatially anisotropic Hamiltonian (2) and derived an
analytical expression for the estimate of the characteristic scale of
inhomogeneity (see Sec. 6 of the supplementary material),

l0 ≈ 0.5
√

max(𝒞 , 6ℬ)/𝒜 . (11)

If we denote the distance between nearest neighbors of the lattice
as d (sc: d = a, bcc: d = a

√
3/2, and fcc: d = a

√
2/2), then δm = d/l0

defines the maximal angle between neighboring spins. Equation (11)
together with (7) allows us to estimate the dependence of δm on
the exchange constants. Figure 5 illustrates such a dependence for
the minimal effective model. According to our estimate, δm should
not exceed ∼45○, half of the critical angle for spin-lattice mod-
els,57 because the continuum functional (2) may become an insuffi-
cient approximation of the lattice Hamiltonian (1). An approximate
inequality d/l0 ⪅ π/4 together with estimation (11) provide the
following criterion for the existence of hopfions:

max(𝒞 , 6ℬ ) ⪆ 6.5𝒜 d2. (12)

E. The case of frustrated magnet (𝓐 < 0)
For the case of nonzero external magnetic field, Bext, one has to

add an additional term to functional (2),

E B = E −M s∫
R3

B ext ⋅ n dr, (13)

where E is the exchange part of the energy defined by (2). For
positive 𝒜 , the ground state of the system is a spin-polarized
state with n(r) ⇈ Bext for each r. On the other hand, for negative
𝒜 and 0 ≤ ∣Bext∣ < ∣Bs∣, the ground state of the system is a spin
spiral. Here, Bs is the critical field value above which the system
undergoes a transition into the spin-polarized state. Let us con-
sider the case of B ext⇈ êz . In the most general case, functional
(13) admits the solution corresponding to equilibrium spin spiral,
n(r) = (cos(q ⋅ r) sin(θ), sin(q ⋅ r) sin(θ), cos(θ)), of two types,

q = 1
2

√
−𝒜
𝒞
(±êx ± êy ± êz), θ = arccos(4M sB ext𝒞

3𝒜 2 ), (14)

and

q = 1
2

√
−𝒜
2ℬ
(±êα), θ = arccos(8M sB extℬ

𝒜 2 ). (15)

The saturation field, Bs, is defined by the condition θ(Bext) = 0.
Taking into account relation (7), one can extrapolate solutions (14)
and (15) to the case of the spin-lattice model. Indeed, Eqs. (15) and
(7) correlate well with some well-known classical results for lattice
models. For instance, as follows from (15) and relations (7) in the
one-dimensional case, the condition for appearance of the spin spiral
in the ground state is J̃4 < −̃J1/4, which agrees with earlier results.58

FIG. 5. An analytical estimate for the maximal angle δm between nearest n vectors for hopfion solutions in the minimal effective model. (a) The micromagnetic parameters
𝒜 , ℬ , and 𝒞 are positive when the reduced parameters for simple cubic lattice J̃2/̃J1, J̃3/̃J1, and J̃4/̃J1, (̃J1 > 0) belong to the domain restricted by three planes
ABC, ABD, and ADC. The shaded triangles represent the sections of the domain with fixed J̃2/̃J1. (b) Alternative representation of the diagram shown in (a) obtained by
projection into the plane of J̃3/̃J1 and J̃4/̃J1. As in (a), the triangles corresponds to fixed values of J̃2/̃J1. The small arrow for J̃3/̃J1 = 0 indicates the single point found by
Bogolubsky.31
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The degenerate case when 𝒞 = 6ℬ and the first term E in (13)
becomes spatially isotropic has been considered earlier in Ref. 32.
It is easy to see that in this case, solutions (14) and (15) coincide,
and the orientation of the q-vector of spiral is not restricted to the
directions of 111-type and 100-type—all directions for spin spiral
propagation are energetically equivalent. The saturation field in the
degenerate case is B s = 𝒜 2/(8M sℬ ).

Hopfion solutions for the degenerate case have been reported
only for the external magnetic field, which is twice as large as the
saturation field Bext = 2Bs.32 The study of hopfion solutions for the
general case (13) at moderate fields Bext ∼ Bs goes beyond the scope
of this work and will be presented elsewhere.

F. Demagnetization fields
In order to prove that hopfions remain stable in realistic

systems, one has to take into account the effect of dipole–dipole
interactions (DDI), which may become significant in the case of
finite size samples as films, plates, and discs. We consider a 30 nm
thick film of a simple cubic crystal with a lattice constant ã = 0.5 nm.
The normal of the film is parallel to the [001] direction. We assume
that the magnetic moment at each atom is equal to one Bohr
magneton, ∣μ∣ = 1μB. The nearest-neighbor ferromagnetic exchange
interaction is J̃1 = 10 meV, and the antiferromagnetic exchange for
the neighbors in the fourth shell is J̃4 = −0.245̃J1. According to (7),
the Heisenberg coupling constants correspond to the micromag-
netic constants as 𝒜 ≈ 3.2 ⋅ 10−14 J m−1, ℬ ≈ 2.4 ⋅ 10−32 J m, and
𝒞 ≈ 4.9 ⋅ 10−32 J m. Direct numerical energy minimization was per-
formed on a domain of 256 × 256 × 60 lattice sites and with periodic
boundary conditions along the x- and y-axes in the plane of the
film. Figure 6(a) illustrates a stable configuration of the hopfion with
Hopf number H = 1 in the center of the film. In order to estimate
the contribution of the DDI to the total energy of the hopfion, we
performed independent energy minimizations for hopfions with and
without DDI and compared the energies of these states, Eh, with the

energies of the ground state Eg with and without DDI, respectively.
The corresponding differences, ΔEh = Eh − Eg, are ΔEh = 30.6J with
DDI and ΔEh = 29.4J without DDI. Thereby, one may conclude that
in our model with quite realistic parameters, the contribution of the
DDI is very small.

Another important aspect of hopfion stability in geometrically
confined systems is related to the interaction of the hopfion with
the edges of the sample. When the initial hopfion configuration is
shifted closer to one of the free surfaces, the system first conver-
gences quickly to a near-equilibrium configuration as found in the
bulk. After a surprisingly large number of iterations, the particle
starts to move gradually toward the nearest free surface and even-
tually escapes from the film. Such a behavior represents one of the
manifestations of the particle-like properties of hopfions. By center-
ing the initial hopfion guess to the middle plane of the film, one can
prevent the escape of the hopfion through the boundary.
G. Off-axis electron holography

In the following, we shortly discuss some important aspects
related to the observation of hopfions in realistic systems with
modern experimental techniques.

The inhomogeneity of the magnetization and the correspond-
ing inhomogeneity of the magnetic induction field allow the detec-
tion of the hopfions by various electron microscopy techniques such
as Lorentz Transmission Electron Microscopy (TEM)59 or off-axis
electron holography.60 The latter allows quantitative measurements
of the phase of the electron wave passing through the sample in the
projection mode. Figure 6(b) shows the calculated magnetic phase
image, which is expected to observe in off-axis electron holography
experiment.60 Modern instruments allow to achieve spatial resolu-
tion up to a few nanometers and a phase resolution of δφ ≈ 2 ⋅ 10−3

rad.60 As seen from Fig. 6(b), that should be enough for hopfion
observation.

Feasible alternatives for hopfion observation are also Lorentz
electron microscopy with exit wave reconstruction,61,62 electron

FIG. 6. (a) A film of 30 nm thickness with an equilibrium hopfion in the center. Due to the dipole–dipole interactions, the preferable direction of magnetization is in the plane
(along the y-axis). The size of the hopfion is ∼10 nm. Note that the main axis of the torus of the hopfion is tilted with respect to êy . (b) The calculated phase shift of electron
wave gone through the film in the minus z-direction and showing an expected image obtained with off-axis electron holography. Note that the image corresponds to the
central area of the sample shown in (a).
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tomography,63,64 and advanced x-ray microscopy and spectroscopy
techniques.21,65,66

H. Transition between ferromagnet (𝓐 > 0)
and frustrated magnet (𝓐 < 0)

In conclusion of this section, we want to discuss in short some
effects we observe near the transition between the ferromagnetic
ground state when 𝒜 > 0 and spin spiral state when 𝒜 < 0. The
observations listed below have an aim to illustrate rich physics stand-
ing behind the presented model here and are expected to motivate
further research in this field.

In order to observe stable hopfion solutions for both 𝒜 > 0 and
𝒜 < 0, we apply an auxiliary external magnetic field Bext = 50 mT
along the plane of the film (B ext⇈ êy). For such relatively weak mag-
netic field, the isolated hopfion with H = 1 remains stable with and
without DDI in a finite range of J̃4 values, which in reduced units
corresponds at least to the range −0.254 ≤ J̃4/̃J1 ≤ −0.24. By varying
value of J̃4, one can effectively change the sign and magnitude of
micromagnetic constant 𝒜 , which leads to the listed below effects.

(I) For −0.239 ≤ J̃4/̃J1, the constant 𝒜 > 0, and with DDI, the
hopfion becomes unstable and collapses. However, without
DDI and with J̃4/̃J1 = −0.239, the hopfion is stable.

(II) For J̃4/̃J1 = −0.25, according to (7), the constant 𝒜 vanishes,
i.e., 𝒜 = 0. This case may turn to be quite interesting for the
following study because according to Ref. 67, in a similar case,
the hopfions in the Skyrme–Faddeev model may resemble
compactons.68

(III) For the range of −0.252 ⪅ J̃4/̃J1 < −0.25, the constant 𝒜 < 0,
but its absolute value is small and the applied magnetic field
exceeds the saturation field, Bext > Bs. The lowest energy state
in this case is the spin-polarized in-plane state. This case,
therefore, is similar to the suppressed spiral mode that was
studied in Ref. 32.

(IV) The case −0.254 ≤ J̃4/̃J1 ⪅ −0.252 corresponds to 𝒜 < 0 in
the regime when Bext < Bs. Despite the fact that the sys-
tem transforms into a spiral state of type (14), the hopfion
remains stable being embedded (“interposed”) in that modu-
lated state. Similar solutions have been recently reported69 for
skyrmions in the 2D isotropic (𝒞 = 6ℬ ) system, which rep-
resents 2D version of functional (13). Those skyrmions can
also be considered as embedded into the modulated phase.
Remarkably, the energy of these skyrmions does not depend
on the displacement. Similar behavior is expected for hopfions
presented here in bulk crystals.

(V) For J̃4/̃J1 = −0.255, the hopfion becomes elliptically unstable.

III. DISCUSSION
Contrary to chiral magnetic skyrmions requiring materials with

strong spin–orbit interaction in combination with a lattice lacking
inversion symmetry,5–7,43 the criteria for the existence of magnetic
hopfions looks more accessible. The magnetic hopfions discussed in
this work can exist in both centrosymmetric and noncentrosymmet-
ric crystals and do not require the presence of spin–orbit coupling at
all. The key requirement for the formation/stability of single/isolated
hopfions is according to our advanced micromagnetic energy
functional a result of the proper competition between the conven-
tional ferromagnetic exchange expressed by the typical spin-stiffness

term proportional to square of the wavevector and higher-order
terms proportional to a quartic relation of the wavevector. The lat-
ter can be a result of competing exchange interaction as put forward
in this paper or due to higher order or multi-spin interactions such
as the bi-quadratic, three-spin four-site, four-spin,70 or chiral–chiral
interactions.71 The proper competition manifests itself in the mate-
rial parameters of the crystal by a flat magnonic dispersion curve
near the gamma point (see Fig. 4). Examples of materials pos-
sessing such property are known.33 The approach for comparing
experimental data from magnets with complex interactions and the
results of DFT calculations is also well established (see, for instance,
Ref. 72).

Knowing criterion (12) motivates a DFT driven virtual design
of materials for stable hopfions á la carte73 with traditional
approaches or the coevolutionary search method.74,75 At the
moment, the most promising techniques for detection and
direct observation of hopfions seem to be x-ray microscopy/
nanotomography and off-axis electron holography/tomography.
Thus, we expect experimental confirmation of their existence in the
near future.

Hopfions offer exciting perspectives in the future information
technology in which hopfions appear as the smallest 3D informa-
tion carrying particles in spintronics. Electrons passing hopfions
will experience an emergent magnetic field created by the non-
coplanar nature of the hopfion’s magnetization texture, giving rise
to a hopfion Hall effect,76 enabling the individual readout of Hopf
invariants. Spin-currents can be used to move hopfions in all three
directions leading eventually to the development of truly 3D memo-
ries. The non-linear dynamical response of hopfions in a box offers
fascinating perspectives for neuromorphic computing.

SUPPLEMENTARY MATERIAL

See the supplementary material for the series expansion tech-
niques, calculation of the topological charge, numerical energy
minimization, continuous formula for the energy functional, bound-
ing from below by a variant of the Skyrme–Faddeev functional,
evaluation of characteristic scale of inhomogeneity for hopfion
textures.
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