000911332 001__ 911332
000911332 005__ 20230224084244.0
000911332 0247_ $$2doi$$a10.1088/1361-6668/ac8580
000911332 0247_ $$2ISSN$$a0953-2048
000911332 0247_ $$2ISSN$$a1361-6668
000911332 0247_ $$2Handle$$a2128/33542
000911332 0247_ $$2WOS$$aWOS:000850353400001
000911332 037__ $$aFZJ-2022-04624
000911332 041__ $$aEnglish
000911332 082__ $$a530
000911332 1001_ $$00000-0001-5440-9061$$aAlcalà, Jordi$$b0$$eCorresponding author
000911332 245__ $$aInfluence of growth temperature on the pinning landscape of YBa 2 Cu 3 O 7− δ films grown from Ba-deficient solutions
000911332 260__ $$aBristol$$bIOP Publ.$$c2022
000911332 3367_ $$2DRIVER$$aarticle
000911332 3367_ $$2DataCite$$aOutput Types/Journal article
000911332 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1673593846_23970
000911332 3367_ $$2BibTeX$$aARTICLE
000911332 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911332 3367_ $$00$$2EndNote$$aJournal Article
000911332 520__ $$aCuprate coated conductors are promising materials for the development of large-scale applications, having superior performance over other superconductors. Tailoring their vortex pinning landscape through nanostructure engineering is one of the major challenges to fulfill the specific application requirements. In this work, we have studied the influence of the growth temperature on the generation of intrinsic pinning defects in YBa2Cu3O7−δ films grown by chemical solution deposition using low Ba precursor solutions. We have analysed the critical current density as a function of the temperature, applied magnetic field magnitude and orientation, Jc(T,H,θ), to elucidate the nature and strength of pinning sites and correlate the microstructure of the films with their superconducting performance. An efficient pinning landscape consisting of stacking faults and associated nanostrain is naturally induced by simply tuning the growth temperature without the need to add artificial pinning sites. Samples grown at an optimized temperature of 750 °C show very high self-field Jc values correlated with an overdoped state and improved Jc(T,H,θ) performances.
000911332 536__ $$0G:(DE-HGF)POF4-5353$$a5353 - Understanding the Structural and Functional Behavior of Solid State Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000911332 536__ $$0G:(EU-Grant)823717$$aESTEEM3 - Enabling Science and Technology through European Electron Microscopy (823717)$$c823717$$fH2020-INFRAIA-2018-1$$x1
000911332 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911332 7001_ $$0P:(DE-HGF)0$$aTernero, Pau$$b1
000911332 7001_ $$0P:(DE-HGF)0$$aPop, Cornelia$$b2
000911332 7001_ $$0P:(DE-HGF)0$$aPiperno, Laura$$b3
000911332 7001_ $$0P:(DE-HGF)0$$aRicart, Susagna$$b4
000911332 7001_ $$0P:(DE-HGF)0$$aMestres, Narcís$$b5
000911332 7001_ $$0P:(DE-HGF)0$$aPuig, Teresa$$b6
000911332 7001_ $$00000-0003-4592-7718$$aObradors, Xavier$$b7
000911332 7001_ $$0P:(DE-Juel1)173622$$aMeledin, Alexander$$b8
000911332 7001_ $$00000-0001-6017-0739$$aCelentano, Giuseppe$$b9
000911332 7001_ $$00000-0002-2217-164X$$aPalau, Anna$$b10
000911332 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/1361-6668/ac8580$$gVol. 35, no. 10, p. 104004 -$$n10$$p104004 -$$tSuperconductor science and technology$$v35$$x0953-2048$$y2022
000911332 8564_ $$uhttps://juser.fz-juelich.de/record/911332/files/Alcal%C3%A0_2022_Supercond._Sci._Technol._35_104004.pdf$$yOpenAccess
000911332 909CO $$ooai:juser.fz-juelich.de:911332$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000911332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173622$$aForschungszentrum Jülich$$b8$$kFZJ
000911332 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)173622$$aRWTH Aachen$$b8$$kRWTH
000911332 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5353$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000911332 9141_ $$y2022
000911332 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000911332 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911332 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000911332 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911332 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-11$$wger
000911332 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSUPERCOND SCI TECH : 2021$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000911332 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-11
000911332 920__ $$lyes
000911332 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000911332 980__ $$ajournal
000911332 980__ $$aVDB
000911332 980__ $$aUNRESTRICTED
000911332 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000911332 9801_ $$aFullTexts