000911336 001__ 911336
000911336 005__ 20230310131405.0
000911336 0247_ $$2doi$$a10.1002/anie.202203728
000911336 0247_ $$2ISSN$$a0570-0833
000911336 0247_ $$2ISSN$$a1433-7851
000911336 0247_ $$2ISSN$$a1521-3773
000911336 0247_ $$2Handle$$a2128/33342
000911336 0247_ $$2pmid$$a35802306
000911336 0247_ $$2WOS$$aWOS:000830727500001
000911336 037__ $$aFZJ-2022-04628
000911336 041__ $$aEnglish
000911336 082__ $$a540
000911336 1001_ $$00000-0003-1966-9495$$aFeng, Quanchen$$b0$$eCorresponding author
000911336 245__ $$aLow‐Pt NiNC‐Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process
000911336 260__ $$aWeinheim$$bWiley-VCH$$c2022
000911336 3367_ $$2DRIVER$$aarticle
000911336 3367_ $$2DataCite$$aOutput Types/Journal article
000911336 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672809951_25435
000911336 3367_ $$2BibTeX$$aARTICLE
000911336 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911336 3367_ $$00$$2EndNote$$aJournal Article
000911336 520__ $$aWe report and analyze a synthetic strategy toward low-Pt platinum-nickel (Pt-Ni) alloy nanoparticle (NP) cathode catalysts for the catalytic electroreduction of molecular oxygen to water. The synthesis involves the pyrolysis and leaching of Ni-organic polymers, subsequent Pt NP deposition, followed by thermal alloying, resulting in single Ni atom site (NiNC)-supported PtNi alloy NPs at low Pt weight loadings of only 3–5 wt %. Despite low Pt weight loading, the catalysts exhibit more favorable Pt-mass activities compared to conventional 20–30 wt % benchmark PtNi catalysts. Using in situ microscopic techniques, we track and unravel the key stages of the PtNi alloy formation process directly at the atomic scale. Surprisingly, we find that carbon-encapsulated metallic Ni@C structures, rather than NiNx sites, act as the Ni source during alloy formation. Our materials concepts offer a pathway to further decrease the overall Pt content in hydrogen fuel cell cathodes.
000911336 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000911336 536__ $$0G:(GEPRIS)257727131$$aDFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)$$c257727131$$x1
000911336 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911336 7001_ $$00000-0003-2785-9707$$aWang, Xingli$$b1
000911336 7001_ $$0P:(DE-HGF)0$$aKlingenhof, Malte$$b2
000911336 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3
000911336 7001_ $$00000-0002-3884-436X$$aStrasser, Peter$$b4$$eCorresponding author
000911336 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202203728$$gVol. 61, no. 36$$n36$$pe202203728$$tAngewandte Chemie / International edition$$v61$$x0570-0833$$y2022
000911336 8564_ $$uhttps://juser.fz-juelich.de/record/911336/files/Angew%20Chem%20Int%20Ed%20-%202022%20-%20Feng%20-%20Low%E2%80%90Pt%20NiNC%E2%80%90Supported%20PtNi%20Nanoalloy%20Oxygen%20Reduction%20Reaction%20Electrocatalysts%20In%20Situ.pdf$$yOpenAccess
000911336 909CO $$ooai:juser.fz-juelich.de:911336$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911336 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b3$$kFZJ
000911336 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000911336 9141_ $$y2022
000911336 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000911336 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000911336 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-30$$wger
000911336 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2021-01-30
000911336 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000911336 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911336 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2021-01-30
000911336 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-11$$wger
000911336 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2021$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-11
000911336 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bANGEW CHEM INT EDIT : 2021$$d2022-11-11
000911336 920__ $$lyes
000911336 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000911336 980__ $$ajournal
000911336 980__ $$aVDB
000911336 980__ $$aUNRESTRICTED
000911336 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000911336 9801_ $$aFullTexts