001     911336
005     20230310131405.0
024 7 _ |a 10.1002/anie.202203728
|2 doi
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a 2128/33342
|2 Handle
024 7 _ |a 35802306
|2 pmid
024 7 _ |a WOS:000830727500001
|2 WOS
037 _ _ |a FZJ-2022-04628
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Feng, Quanchen
|0 0000-0003-1966-9495
|b 0
|e Corresponding author
245 _ _ |a Low‐Pt NiNC‐Supported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1672809951_25435
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report and analyze a synthetic strategy toward low-Pt platinum-nickel (Pt-Ni) alloy nanoparticle (NP) cathode catalysts for the catalytic electroreduction of molecular oxygen to water. The synthesis involves the pyrolysis and leaching of Ni-organic polymers, subsequent Pt NP deposition, followed by thermal alloying, resulting in single Ni atom site (NiNC)-supported PtNi alloy NPs at low Pt weight loadings of only 3–5 wt %. Despite low Pt weight loading, the catalysts exhibit more favorable Pt-mass activities compared to conventional 20–30 wt % benchmark PtNi catalysts. Using in situ microscopic techniques, we track and unravel the key stages of the PtNi alloy formation process directly at the atomic scale. Surprisingly, we find that carbon-encapsulated metallic Ni@C structures, rather than NiNx sites, act as the Ni source during alloy formation. Our materials concepts offer a pathway to further decrease the overall Pt content in hydrogen fuel cell cathodes.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|x 0
|f POF IV
536 _ _ |a DFG project 257727131 - Nanoskalige Pt Legierungselektrokatalysatoren mit definierter Morphologie: Synthese, Electrochemische Analyse, und ex-situ/in-situ Transmissionselektronenmikroskopische (TEM) Studien (257727131)
|0 G:(GEPRIS)257727131
|c 257727131
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Xingli
|0 0000-0003-2785-9707
|b 1
700 1 _ |a Klingenhof, Malte
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 3
700 1 _ |a Strasser, Peter
|0 0000-0002-3884-436X
|b 4
|e Corresponding author
773 _ _ |a 10.1002/anie.202203728
|g Vol. 61, no. 36
|0 PERI:(DE-600)2011836-3
|n 36
|p e202203728
|t Angewandte Chemie / International edition
|v 61
|y 2022
|x 0570-0833
856 4 _ |u https://juser.fz-juelich.de/record/911336/files/Angew%20Chem%20Int%20Ed%20-%202022%20-%20Feng%20-%20Low%E2%80%90Pt%20NiNC%E2%80%90Supported%20PtNi%20Nanoalloy%20Oxygen%20Reduction%20Reaction%20Electrocatalysts%20In%20Situ.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911336
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130695
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-11
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANGEW CHEM INT EDIT : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-11
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-11
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ANGEW CHEM INT EDIT : 2021
|d 2022-11-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21