001     911339
005     20240506205522.0
024 7 _ |a 10.1101/2021.06.13.448243
|2 doi
024 7 _ |a 2128/29432
|2 Handle
024 7 _ |a altmetric:107598347
|2 altmetric
024 7 _ |a 10.1016/j.bpsgos.2022.08.003
|2 doi
024 7 _ |a 10.34734/FZJ-2022-04631
|2 datacite_doi
024 7 _ |a 37881579
|2 pmid
024 7 _ |a WOS:001098291000001
|2 WOS
037 _ _ |a FZJ-2022-04631
082 _ _ |a 610
100 1 _ |a Kirschner, Matthias
|0 0000-0002-9486-1439
|b 0
|e Corresponding author
245 _ _ |a Schizophrenia polygenic risk during typical development reflects multiscale cortical organization
260 _ _ |a Amsterdam
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714995435_14323
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Schizophrenia is widely recognized as a neurodevelopmental disorder, but determining neurodevelopmental features of schizophrenia requires a departure from classic case-control designs. Polygenic risk scoring for schizophrenia (PRS-SCZ) enables investigation of the influence of genetic risk for schizophrenia on cortical anatomy during neurodevelopment and prior to disease onset. PRS-SCZ and cortical morphometry were assessed in typically developing children (3 – 21 years) using T1-weighted MRI and whole genome genotyping (n=390) from the Pediatric Imaging, Neurocognition and Genetics (PING) cohort. Then, we sought to contextualise the findings using (i) age-matched transcriptomics, (ii) gradients of cortical differentiation and (iii) case-control differences of major psychiatric disorders. Higher PRS-SCZ was associated with greater cortical thickness in typically developing children, while surface area and cortical volume showed only subtle associations. Greater cortical thickness was most prominent in areas with heightened gene expression for dendrites and synapses. The pattern of PRS-SCZ associations with cortical thickness reflected functional specialisation in the cortex and was spatially related to cortical abnormalities of patient populations of schizophrenia, bipolar disorder, and major depression. Finally, age interaction models indicated PRS-SCZ effects on cortical thickness were most pronounced between ages 3 and 6, suggesting an influence of PRS-SCZ on cortical maturation early in life. Integrating imaging-genetics with multi-scale mapping of cortical organization, our work contributes to an emerging understanding of how risk for schizophrenia and related disorders manifest in early life.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a HIBALL - Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) (InterLabs-0015)
|0 G:(DE-HGF)InterLabs-0015
|c InterLabs-0015
|x 1
700 1 _ |a Paquola, Casey
|0 P:(DE-Juel1)187055
|b 1
700 1 _ |a Khundrakpam, Budhachandra S.
|0 0000-0001-8095-5656
|b 2
700 1 _ |a Vainik, Uku
|0 0000-0002-9375-9520
|b 3
700 1 _ |a Bhutani, Neha
|0 0000-0001-5404-535X
|b 4
700 1 _ |a Benazir-Hodzic-Santor
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Al-Sharif, Noor B.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Misic, Bratislav
|0 0000-0003-0307-2862
|b 7
700 1 _ |a Bernhardt, Boris
|0 0000-0001-9256-6041
|b 8
700 1 _ |a Evans, Alan C.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Dagher, Alain
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.bpsgos.2022.08.003
|0 PERI:(DE-600)3094992-0
|n 4
|p 1083-1093
|t Biological psychiatry: global open science
|v 3
|y 2023
787 0 _ |a Kirschner, Matthias et.al.
|d 2021
|i IsParent
|0 FZJ-2021-05133
|r
|t Schizophrenia polygenic risk during typical development reflects multiscale cortical organization
856 4 _ |u https://juser.fz-juelich.de/record/911339/files/1-s2.0-S2667174322000969-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/911339/files/1-s2.0-S2667174322000969-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/911339/files/1-s2.0-S2667174322000969-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/911339/files/1-s2.0-S2667174322000969-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/911339/files/1-s2.0-S2667174322000969-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911339
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)187055
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2023
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-08-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-11-10T08:42:22Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-11-10T08:42:22Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2022-11-10T08:42:22Z
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21