000911346 001__ 911346 000911346 005__ 20230123110735.0 000911346 0247_ $$2doi$$a10.1080/01431161.2022.2131481 000911346 0247_ $$2ISSN$$a0143-1161 000911346 0247_ $$2ISSN$$a1366-5901 000911346 0247_ $$2Handle$$a2128/32669 000911346 0247_ $$2WOS$$aWOS:000882850800001 000911346 037__ $$aFZJ-2022-04638 000911346 082__ $$a620 000911346 1001_ $$00000-0001-9287-0596$$aBazi, Yakoub$$b0 000911346 245__ $$aLearning from Data for Remote Sensing Image Analysis 000911346 260__ $$aLondon$$bTaylor & Francis$$c2022 000911346 3367_ $$2DRIVER$$aarticle 000911346 3367_ $$2DataCite$$aOutput Types/Journal article 000911346 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1668759799_30045 000911346 3367_ $$2BibTeX$$aARTICLE 000911346 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000911346 3367_ $$00$$2EndNote$$aJournal Article 000911346 520__ $$aRecent advances in satellite technology have led to a regular, frequent and high- resolution monitoring of Earth at the global scale, providing an unprecedented amount of Earth observation (EO) data. The growing operational capability of global Earth monitoring from space provides a wealth of information on the state of our planet Earth that waits to be mined for several different EO applications, e.g. climate change analysis, urban area studies, forestry applications, risk and damage assessment, water quality assessment, crop monitoring and so on. Recent studies in machine learning have triggered substantial performance gain for the above-mentioned tasks. Advanced machine learning models such as deep convolutional neural networks (CNNs), recursive neural networks and transformers have recently made great progress in a wide range of remote sensing (RS) tasks, such as object detection, RS image classification, image captioning and so on. The study of Bai et al. (2021) analyzes the research progress, hotspots, trends and methods in the field of deep learning in remote sensing, and deep learning is becoming an important tool for remote sensing and has been widely used in numerous remote sensing tasks related to image processing and analysis. In this context, the present special issue aims at gathering a collection of papers in the most advanced and trendy areas dealing with learning from data and with applications to remote sensing image analysis. The manuscripts can be subdivided into five groups depending mainly on the processing or learning task. A specific collection for hyperspectral imagery has been included given the special attention by the remote sensing community to this kind of data. 000911346 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000911346 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000911346 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b1 000911346 7001_ $$00000-0003-2175-7072$$aDemir, Begüm$$b2 000911346 7001_ $$00000-0001-9745-3732$$aMelgani, Farid$$b3$$eCorresponding author 000911346 773__ $$0PERI:(DE-600)1497529-4$$a10.1080/01431161.2022.2131481$$gVol. 43, no. 15-16, p. 5527 - 5533$$n15-16$$p5527 - 5533$$tInternational journal of remote sensing$$v43$$x0143-1161$$y2022 000911346 8564_ $$uhttps://juser.fz-juelich.de/record/911346/files/preprint.pdf$$yPublished on 2022-11-12. Available in OpenAccess from 2023-11-12. 000911346 909CO $$ooai:juser.fz-juelich.de:911346$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000911346 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b1$$kFZJ 000911346 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000911346 9141_ $$y2022 000911346 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28 000911346 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess 000911346 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0 000911346 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000911346 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000911346 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger 000911346 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J REMOTE SENS : 2021$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-16 000911346 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-16 000911346 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000911346 980__ $$ajournal 000911346 980__ $$aVDB 000911346 980__ $$aUNRESTRICTED 000911346 980__ $$aI:(DE-Juel1)JSC-20090406 000911346 9801_ $$aFullTexts