001     911346
005     20230123110735.0
024 7 _ |a 10.1080/01431161.2022.2131481
|2 doi
024 7 _ |a 0143-1161
|2 ISSN
024 7 _ |a 1366-5901
|2 ISSN
024 7 _ |a 2128/32669
|2 Handle
024 7 _ |a WOS:000882850800001
|2 WOS
037 _ _ |a FZJ-2022-04638
082 _ _ |a 620
100 1 _ |a Bazi, Yakoub
|0 0000-0001-9287-0596
|b 0
245 _ _ |a Learning from Data for Remote Sensing Image Analysis
260 _ _ |a London
|c 2022
|b Taylor & Francis
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668759799_30045
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent advances in satellite technology have led to a regular, frequent and high- resolution monitoring of Earth at the global scale, providing an unprecedented amount of Earth observation (EO) data. The growing operational capability of global Earth monitoring from space provides a wealth of information on the state of our planet Earth that waits to be mined for several different EO applications, e.g. climate change analysis, urban area studies, forestry applications, risk and damage assessment, water quality assessment, crop monitoring and so on. Recent studies in machine learning have triggered substantial performance gain for the above-mentioned tasks. Advanced machine learning models such as deep convolutional neural networks (CNNs), recursive neural networks and transformers have recently made great progress in a wide range of remote sensing (RS) tasks, such as object detection, RS image classification, image captioning and so on. The study of Bai et al. (2021) analyzes the research progress, hotspots, trends and methods in the field of deep learning in remote sensing, and deep learning is becoming an important tool for remote sensing and has been widely used in numerous remote sensing tasks related to image processing and analysis. In this context, the present special issue aims at gathering a collection of papers in the most advanced and trendy areas dealing with learning from data and with applications to remote sensing image analysis. The manuscripts can be subdivided into five groups depending mainly on the processing or learning task. A specific collection for hyperspectral imagery has been included given the special attention by the remote sensing community to this kind of data.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 1
700 1 _ |a Demir, Begüm
|0 0000-0003-2175-7072
|b 2
700 1 _ |a Melgani, Farid
|0 0000-0001-9745-3732
|b 3
|e Corresponding author
773 _ _ |a 10.1080/01431161.2022.2131481
|g Vol. 43, no. 15-16, p. 5527 - 5533
|0 PERI:(DE-600)1497529-4
|n 15-16
|p 5527 - 5533
|t International journal of remote sensing
|v 43
|y 2022
|x 0143-1161
856 4 _ |u https://juser.fz-juelich.de/record/911346/files/preprint.pdf
|y Published on 2022-11-12. Available in OpenAccess from 2023-11-12.
909 C O |o oai:juser.fz-juelich.de:911346
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J REMOTE SENS : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-16
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21