000911349 001__ 911349
000911349 005__ 20240625201955.0
000911349 0247_ $$2doi$$a10.1016/S0969-8051(22)00134-2
000911349 0247_ $$2ISSN$$a0969-8051
000911349 0247_ $$2ISSN$$a1872-9614
000911349 037__ $$aFZJ-2022-04641
000911349 082__ $$a570
000911349 1001_ $$0P:(DE-Juel1)186812$$aKeuthen, Yannick$$b0$$eCorresponding author$$ufzj
000911349 1112_ $$a24th International Symposium on Radiopharmaceutical Sciences$$cNantes$$d2022-05-29 - 2022-06-03$$giSRS 2022$$wFrance
000911349 245__ $$aApplication of quaternary 1,4-diazabicyclo[2.2.2]octan (DABCO) salts for SN2 “minimalist” radiofluorination
000911349 260__ $$c2022
000911349 3367_ $$033$$2EndNote$$aConference Paper
000911349 3367_ $$2DataCite$$aOther
000911349 3367_ $$2BibTeX$$aINPROCEEDINGS
000911349 3367_ $$2DRIVER$$aconferenceObject
000911349 3367_ $$2ORCID$$aLECTURE_SPEECH
000911349 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1719297633_7356$$xAfter Call
000911349 520__ $$aObjectives: The piperazine scaffold is a privileged structuralmotif contained in numerous pharmaceuticals, including severalPET-tracers. The aim of this work was to evaluate quaternary DABCOsalts as precursors for the preparation of probes containing a N-(2-[18F]Fluoroethyl)piperazyl fragment by the “minimalist” approach.[1]The latter allows for the preparation of 18F-labeled compounds usingonly [18F]F– and onium salt precursors, obviating the need for externalbase, other additives and azeotropic drying.Methods: Quaternary DABCO salts were prepared by direct alkylation,(het)arylation, benzoylation or tosylation of DABCO. If necessary,anion metathesis was carried out. [18F]F– was eluted from ananion exchange resin with a solution of the corresponding DABCO saltin MeOH. MeOH was evaporated at 60°C for 8 min, the residue wastaken up into a suitable solvent and heated in a Monowave 50 (AntonPaar, Ostfildern-Scharnhausen, Germany) synthesis reactor. The radiolabelingprocedure was optimized with respect to reaction time,temperature, solvent and DABCO salt counter ion. Radiolabeled compoundsprepared from alkyl-substituted DABCO salts were isolatedby solid phase extraction (SPE). Additionally, N-(2-[18F]Fluoroethyl)-N’-pentynyl-piperazine ([18F]1) isolated by SPE was clicked withbenzyl azide (2) to afford a 18F-fluorinated model triazole ([18F]3).Results: Reaction of DABCO with alkyl halogenides or sulfonatesled to quaternary alkyl DABCO salts, radiofluorination of which under“minimalist” conditions furnished the corresponding ring openingproducts, N-alkyl-N’-(2-[18F]Fluoroethyl) piperazines, in 48–93%RCYs (determined by HPLC) and, after isolation by simple SPE, activityyields of up to 31%. Reaction of [18F]1 with 2 delivered [18F]3 in aquantitative RCY (determined by HPLC). (Het)arylation, benzoylationand tosylation of DABCO afforded the respective N’-substituted piperazyl-N-ethyl DABCO salts (addition products of two DABCO molecules)in up to 90% yields as single isolable products. 18F-Fluorinationof such substrates mainly occurred via substitution of the DABCOgroup, leading to formation of the corresponding radiofluorinatedN-substituted N’-(2-[18F]Fluoroethyl)piperazines in RCYs of 28–46%(determined by HPLC).Conclusions: Quaternary DABCO salts are efficient precursors forrapid preparation of probes containing an N-(2-[18F]Fluoroethyl)piperazinemotif using the simple and convenient “minimalist” protocol.Acknowledgement: This work was supported by the DFG grantZL 65/4-1.Reference:[1] B. D. Zlatopolskiy, et al.; Org. Biomol. Chem., 2014, 12, 8094.
000911349 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000911349 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911349 7001_ $$0P:(DE-Juel1)185610$$aZlatopolskiy, Boris$$b1$$ufzj
000911349 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b2$$ufzj
000911349 773__ $$0PERI:(DE-600)1498538-X$$a10.1016/S0969-8051(22)00134-2$$gVol. 108-109, p. S49 -$$x0969-8051$$y2022
000911349 8564_ $$uhttps://juser.fz-juelich.de/record/911349/files/1-s2.0-S0969805122001342-main.pdf$$yRestricted
000911349 8564_ $$uhttps://juser.fz-juelich.de/record/911349/files/1-s2.0-S0969805122001342-main.gif?subformat=icon$$xicon$$yRestricted
000911349 8564_ $$uhttps://juser.fz-juelich.de/record/911349/files/1-s2.0-S0969805122001342-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000911349 8564_ $$uhttps://juser.fz-juelich.de/record/911349/files/1-s2.0-S0969805122001342-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000911349 8564_ $$uhttps://juser.fz-juelich.de/record/911349/files/1-s2.0-S0969805122001342-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000911349 909CO $$ooai:juser.fz-juelich.de:911349$$pVDB
000911349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186812$$aForschungszentrum Jülich$$b0$$kFZJ
000911349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185610$$aForschungszentrum Jülich$$b1$$kFZJ
000911349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b2$$kFZJ
000911349 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000911349 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000911349 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL MED BIOL : 2019$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000911349 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000911349 920__ $$lyes
000911349 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
000911349 980__ $$aconf
000911349 980__ $$aVDB
000911349 980__ $$aI:(DE-Juel1)INM-5-20090406
000911349 980__ $$aUNRESTRICTED