000911355 001__ 911355
000911355 005__ 20221116131015.0
000911355 037__ $$aFZJ-2022-04647
000911355 041__ $$aEnglish
000911355 1001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K. G.$$b0$$eCorresponding author
000911355 1112_ $$a70th Anniversary and 2022 Fall Meeting$$cBEXCO Convention Hall, Busan, South Korea, Online$$d2022-10-18 - 2022-10-21$$wSouth Korea
000911355 245__ $$aMotility-Induced Inter-Particle Correlations and Dynamics:a Microscopic Approach for Active Brownian Particles
000911355 260__ $$c2022
000911355 3367_ $$033$$2EndNote$$aConference Paper
000911355 3367_ $$2DataCite$$aOther
000911355 3367_ $$2BibTeX$$aINPROCEEDINGS
000911355 3367_ $$2DRIVER$$aconferenceObject
000911355 3367_ $$2ORCID$$aLECTURE_SPEECH
000911355 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1668518401_2646$$xPlenary/Keynote
000911355 520__ $$aAmongst the various theoretical approaches towards dynamics and phase behaviour of suspensions of active Brownian particles (ABPs), no attempt has been made to specify motility-induced inter-particle correlations. In this presentation, the derivation of explicit expressions for the pair-correlation function for ABPs for small and large swimming velocities and low concentrations is discussed. The pair-correlation function is the solution of a differential equation that is obtained from the Fokker-Planck equation for the probability density function of the positions and orientations of the ABPs, commonly referred to as the Smoluchowski equation. For large swimming Peclet numbers , the pair-correlation function is highly asymmetric. The pair-correlation function attains a large value   within a small region of spatial extent  1/ near contact of the ABPs when the ABPs approach each other. The pair-correlation function is small within a large region of spatial extent  1/3 when the ABPs move apart, with a contact value that is close to zero. From the explicit expressions for the pair-correlation function, Fick's diffusion equation is generalized to include motility. It is shown that mass transport, in case of large swimming velocities, is dominated by a preferred swimming direction that is induced by concentration gradients.
000911355 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000911355 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x0
000911355 7001_ $$0P:(DE-Juel1)159317$$aBriels, Willem$$b1
000911355 7001_ $$0P:(DE-Juel1)173831$$aPark, Gunwoo$$b2
000911355 909CO $$ooai:juser.fz-juelich.de:911355$$pVDB
000911355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b0$$kFZJ
000911355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159317$$aForschungszentrum Jülich$$b1$$kFZJ
000911355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173831$$aForschungszentrum Jülich$$b2$$kFZJ
000911355 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000911355 9141_ $$y2022
000911355 920__ $$lyes
000911355 9201_ $$0I:(DE-Juel1)IBI-4-20200312$$kIBI-4$$lBiomakromolekulare Systeme und Prozesse$$x0
000911355 980__ $$aconf
000911355 980__ $$aVDB
000911355 980__ $$aI:(DE-Juel1)IBI-4-20200312
000911355 980__ $$aUNRESTRICTED