000911385 001__ 911385
000911385 005__ 20230308201754.0
000911385 0247_ $$2doi$$a10.1039/D2QI01437H
000911385 0247_ $$2ISSN$$a2052-1545
000911385 0247_ $$2ISSN$$a2052-1553
000911385 0247_ $$2Handle$$a2128/33340
000911385 0247_ $$2WOS$$aWOS:000853004700001
000911385 037__ $$aFZJ-2022-04668
000911385 041__ $$aEnglish
000911385 082__ $$a540
000911385 1001_ $$0P:(DE-HGF)0$$aZhang, Fudong$$b0
000911385 245__ $$aContrasting roles of Bi-doping and Bi 2 Te 3 alloying on the thermoelectric performance of SnTe
000911385 260__ $$aCambridge$$bRSC$$c2022
000911385 3367_ $$2DRIVER$$aarticle
000911385 3367_ $$2DataCite$$aOutput Types/Journal article
000911385 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1678261459_19646
000911385 3367_ $$2BibTeX$$aARTICLE
000911385 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911385 3367_ $$00$$2EndNote$$aJournal Article
000911385 520__ $$aPrevious studies have revealed that both Bi doping and Bi2Te3 alloying are successful strategies to optimize the thermoelectric performance of SnTe; however, detailed and thorough investigations on exactly how they differ in modulating the band structure and microstructure were seldom given. Through a systematic comparison between Bi-doped and Bi2Te3-alloyed SnTe, we find in this work that despite the fact that they both contribute to the valence band convergence of SnTe, Bi2Te3 alloying induces little effect on the hole concentration unlike the typical n-type feature of Bi-doping; moreover, Bi2Te3 alloying tends to produce dense dislocation arrays at micron-scale grain boundaries which differs significantly from the substitutional point defect character upon Bi-doping. It was then found that Bi2Te3 alloying exhibits a relatively higher quality factor (B ∼ μw/κlat) at higher temperatures than Bi-doping. Subsequent Ge-doping in Bi2Te3-alloyed samples results in further valence band convergence and hole concentration optimization and eventually results in a maximum figure of merit ZT of 1.4 at 873 K in the composition of (Sn0.88Ge0.12Te)0.97-(BiTe1.5)0.03.
000911385 536__ $$0G:(DE-HGF)POF4-5351$$a5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000911385 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911385 7001_ $$0P:(DE-HGF)0$$aQi, Guanxiao$$b1
000911385 7001_ $$0P:(DE-HGF)0$$aHe, Mingkai$$b2
000911385 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b3
000911385 7001_ $$0P:(DE-Juel1)145711$$aJin, Lei$$b4$$eCorresponding author
000911385 7001_ $$00000-0003-1000-258X$$aPeng, Zhanhui$$b5
000911385 7001_ $$0P:(DE-HGF)0$$aChao, Xiaolian$$b6
000911385 7001_ $$00000-0001-5096-2134$$aYang, Zupei$$b7$$eCorresponding author
000911385 7001_ $$00000-0002-3467-819X$$aWu, Di$$b8$$eCorresponding author
000911385 773__ $$0PERI:(DE-600)2757213-4$$a10.1039/D2QI01437H$$gVol. 9, no. 21, p. 5562 - 5571$$n21$$p5562 - 5571$$tInorganic chemistry frontiers$$v9$$x2052-1545$$y2022
000911385 8564_ $$uhttps://juser.fz-juelich.de/record/911385/files/FZJ-2022-04668.pdf$$yPublished on 2022-09-06. Available in OpenAccess from 2023-09-06.
000911385 8564_ $$uhttps://juser.fz-juelich.de/record/911385/files/d2qi01437h.pdf$$yRestricted
000911385 909CO $$ooai:juser.fz-juelich.de:911385$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b3$$kFZJ
000911385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145711$$aForschungszentrum Jülich$$b4$$kFZJ
000911385 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5351$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000911385 9141_ $$y2022
000911385 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000911385 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000911385 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000911385 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-29$$wger
000911385 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM FRONT : 2021$$d2022-11-29
000911385 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000911385 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000911385 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000911385 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000911385 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2022-11-29
000911385 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINORG CHEM FRONT : 2021$$d2022-11-29
000911385 920__ $$lyes
000911385 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000911385 980__ $$ajournal
000911385 980__ $$aVDB
000911385 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000911385 980__ $$aUNRESTRICTED
000911385 9801_ $$aFullTexts