001     911385
005     20230308201754.0
024 7 _ |a 10.1039/D2QI01437H
|2 doi
024 7 _ |a 2052-1545
|2 ISSN
024 7 _ |a 2052-1553
|2 ISSN
024 7 _ |a 2128/33340
|2 Handle
024 7 _ |a WOS:000853004700001
|2 WOS
037 _ _ |a FZJ-2022-04668
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Zhang, Fudong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Contrasting roles of Bi-doping and Bi 2 Te 3 alloying on the thermoelectric performance of SnTe
260 _ _ |a Cambridge
|c 2022
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678261459_19646
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Previous studies have revealed that both Bi doping and Bi2Te3 alloying are successful strategies to optimize the thermoelectric performance of SnTe; however, detailed and thorough investigations on exactly how they differ in modulating the band structure and microstructure were seldom given. Through a systematic comparison between Bi-doped and Bi2Te3-alloyed SnTe, we find in this work that despite the fact that they both contribute to the valence band convergence of SnTe, Bi2Te3 alloying induces little effect on the hole concentration unlike the typical n-type feature of Bi-doping; moreover, Bi2Te3 alloying tends to produce dense dislocation arrays at micron-scale grain boundaries which differs significantly from the substitutional point defect character upon Bi-doping. It was then found that Bi2Te3 alloying exhibits a relatively higher quality factor (B ∼ μw/κlat) at higher temperatures than Bi-doping. Subsequent Ge-doping in Bi2Te3-alloyed samples results in further valence band convergence and hole concentration optimization and eventually results in a maximum figure of merit ZT of 1.4 at 873 K in the composition of (Sn0.88Ge0.12Te)0.97-(BiTe1.5)0.03.
536 _ _ |a 5351 - Platform for Correlative, In Situ and Operando Characterization (POF4-535)
|0 G:(DE-HGF)POF4-5351
|c POF4-535
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Qi, Guanxiao
|0 P:(DE-HGF)0
|b 1
700 1 _ |a He, Mingkai
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zheng, Fengshan
|0 P:(DE-Juel1)165965
|b 3
700 1 _ |a Jin, Lei
|0 P:(DE-Juel1)145711
|b 4
|e Corresponding author
700 1 _ |a Peng, Zhanhui
|0 0000-0003-1000-258X
|b 5
700 1 _ |a Chao, Xiaolian
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Yang, Zupei
|0 0000-0001-5096-2134
|b 7
|e Corresponding author
700 1 _ |a Wu, Di
|0 0000-0002-3467-819X
|b 8
|e Corresponding author
773 _ _ |a 10.1039/D2QI01437H
|g Vol. 9, no. 21, p. 5562 - 5571
|0 PERI:(DE-600)2757213-4
|n 21
|p 5562 - 5571
|t Inorganic chemistry frontiers
|v 9
|y 2022
|x 2052-1545
856 4 _ |u https://juser.fz-juelich.de/record/911385/files/FZJ-2022-04668.pdf
|y Published on 2022-09-06. Available in OpenAccess from 2023-09-06.
856 4 _ |u https://juser.fz-juelich.de/record/911385/files/d2qi01437h.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:911385
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145711
913 1 _ |a DE-HGF
|b Key Technologies
|l Materials Systems Engineering
|1 G:(DE-HGF)POF4-530
|0 G:(DE-HGF)POF4-535
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Materials Information Discovery
|9 G:(DE-HGF)POF4-5351
|x 0
914 1 _ |y 2022
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-29
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INORG CHEM FRONT : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INORG CHEM FRONT : 2021
|d 2022-11-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21