000911404 001__ 911404
000911404 005__ 20240712112926.0
000911404 0247_ $$2doi$$a10.1063/5.0093043
000911404 0247_ $$2ISSN$$a1070-6631
000911404 0247_ $$2ISSN$$a1089-7666
000911404 0247_ $$2ISSN$$a1527-2435
000911404 0247_ $$2Handle$$a2128/33803
000911404 0247_ $$2WOS$$aWOS:000811423800006
000911404 037__ $$aFZJ-2022-04687
000911404 041__ $$aEnglish
000911404 082__ $$a530
000911404 1001_ $$0P:(DE-Juel1)186855$$aPelusi, Francesca$$b0$$eCorresponding author
000911404 245__ $$aLiquid film rupture beyond the thin-film equation: A multi-component lattice Boltzmann study
000911404 260__ $$a[S.l.]$$bAmerican Institute of Physics$$c2022
000911404 3367_ $$2DRIVER$$aarticle
000911404 3367_ $$2DataCite$$aOutput Types/Journal article
000911404 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675058184_19164
000911404 3367_ $$2BibTeX$$aARTICLE
000911404 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911404 3367_ $$00$$2EndNote$$aJournal Article
000911404 520__ $$aUnder the condition of partial surface wettability, thin liquid films can be destabilized by small perturbations and rupture into droplets. Assuccessfully predicted by the thin film equation (TFE), the rupture dynamics are dictated by the liquid–solid interaction. The theorydescribes the latter using the disjoining pressure or, equivalently, the contact angle. The introduction of a secondary fluid can lead to a richerphenomenology, thanks to the presence of different fluid/surface interaction energies but has so far not been investigated. In this work, westudy the rupture of liquid films with different heights immersed in a secondary fluid using a multi-component lattice Boltzmann (LB)approach. We investigate a wide range of surface interaction energies, equilibrium contact angles, and film thicknesses. We found that therupture time can differ by about one order of magnitude for identical equilibrium contact angles but different surface free energies.Interestingly, the TFE describes the observed breakup dynamics qualitatively well, up to equilibrium contact angles as large as 130. A smallfilm thickness is a much stricter requirement for the validity of the TFE, and agreement with LB results is found only for ratios e ¼ h=L ofthe film height h and lateral system size L, such as e  103.
000911404 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000911404 536__ $$0G:(GEPRIS)431791331$$aDFG project 431791331 - SFB 1452: Katalyse an flüssigen Grenzflächen $$c431791331$$x1
000911404 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911404 7001_ $$0P:(DE-Juel1)174533$$aSega, M.$$b1
000911404 7001_ $$0P:(DE-Juel1)167472$$aHarting, J.$$b2
000911404 773__ $$0PERI:(DE-600)1472743-2$$a10.1063/5.0093043$$gVol. 34, no. 6, p. 062109 -$$n6$$p062109 -$$tPhysics of fluids$$v34$$x1070-6631$$y2022
000911404 8564_ $$uhttps://juser.fz-juelich.de/record/911404/files/AF_Liquid%20film%20rupture%20beyond%20the%20thin-film%20equation_%20A%20multi-component%20lattice%20Boltzmann%20study.pdf$$yPublished on 2022-06-14. Available in OpenAccess from 2023-06-14.$$zStatID:(DE-HGF)0510
000911404 8564_ $$uhttps://juser.fz-juelich.de/record/911404/files/Liquid%20film%20rupture%20beyond%20the%20thin-film%20equation_%20A%20multi-component%20lattice%20Boltzmann%20study.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000911404 909CO $$ooai:juser.fz-juelich.de:911404$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186855$$aForschungszentrum Jülich$$b0$$kFZJ
000911404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174533$$aForschungszentrum Jülich$$b1$$kFZJ
000911404 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b2$$kFZJ
000911404 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000911404 9141_ $$y2022
000911404 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000911404 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS FLUIDS : 2019$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2021-01-30$$wger
000911404 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-30
000911404 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-30$$wger
000911404 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000911404 920__ $$lyes
000911404 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000911404 9801_ $$aFullTexts
000911404 980__ $$ajournal
000911404 980__ $$aVDB
000911404 980__ $$aUNRESTRICTED
000911404 980__ $$aI:(DE-Juel1)IEK-11-20140314
000911404 981__ $$aI:(DE-Juel1)IET-2-20140314