000911423 001__ 911423
000911423 005__ 20240709082138.0
000911423 037__ $$aFZJ-2022-04706
000911423 1001_ $$0P:(DE-Juel1)165598$$aSchatz, Michael$$b0$$eCorresponding author
000911423 1112_ $$aElectrochemistry 2022 "At the Interface between Chemistry and Physics"$$cBerlin$$d2022-09-27 - 2022-09-30$$wGermany
000911423 245__ $$aMeasuring local pH gradients using $^{13}C$ magnetic resonance imaging
000911423 260__ $$c2022
000911423 3367_ $$033$$2EndNote$$aConference Paper
000911423 3367_ $$2DataCite$$aOther
000911423 3367_ $$2BibTeX$$aINPROCEEDINGS
000911423 3367_ $$2DRIVER$$aconferenceObject
000911423 3367_ $$2ORCID$$aLECTURE_SPEECH
000911423 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1668589452_11092$$xAfter Call
000911423 520__ $$aIn the light of the ever-increasing number of new catalyst materials for the CO2 reduction reaction (CO2RR), determination of local conditions in electrode proximity is crucial to understand and improve the performance of electrolysis. Especially the widespread use of KHCO3 in low concentrations clearly demonstrates the importance of the choice of electrolyte for the catalysis of this reaction, since its low buffer capacity leads to increased pH in proximity to the electrode. This promotes C2+ product reaction pathways, while simultaneously suppressing unfavourable CH4 and H2 formation. Measuring local pH values on CO2RR-catalyst surfaces has been attempted by optical methods and by scanning probe microscopy. In our recent work, we presented a NMR method for determining local pH in KHCO3 electrolyte at a Cu electrode using the 13C resonances of the CO2/HCO3-/CO32- equilibrium. The present study adds a spatial dimension to this technique in order to investigate evolution of local pH and concentration gradients over time in the electrochemical cell illustrated in Fig. 1a.Spatially resolved 13C spectra of the averaged carbonate (HCO3-/CO32-) resonance are presented in Fig. 1b. The electrode was placed at z = 0 mm. Before electrolysis, the carbonate peak had a constant chemical shift along the z-direction. As a constant potential was applied, the peak locally shifted downfield, which corresponds to a local pH increase. These pH gradients are quantified by fitting Lorentzian functions to the peaks. In Fig. 1c, resulting z-profiles of the chemical shift of the carbonate peak and their development over time are depicted. A sudden increase of near-electrode pH at the beginning of the electrolysis was observed, followed by an assimilation of local and bulk values. In this study, it will be shown that chemical shift imaging is successfully applied in operando to resolve the spatial distribution of pH value and electrolyte concentrations in the vicinity of a Cu electrode during CO2RR. The evolution of these values as a function of time are in accordance with theory.
000911423 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000911423 536__ $$0G:(GEPRIS)390919832$$aDFG project 390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x1
000911423 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000911423 7001_ $$0P:(DE-Juel1)169518$$aJovanovic, Sven$$b1
000911423 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b2
000911423 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b3
000911423 909CO $$ooai:juser.fz-juelich.de:911423$$pVDB
000911423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165598$$aForschungszentrum Jülich$$b0$$kFZJ
000911423 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)165598$$aRWTH Aachen$$b0$$kRWTH
000911423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169518$$aForschungszentrum Jülich$$b1$$kFZJ
000911423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b2$$kFZJ
000911423 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b2$$kRWTH
000911423 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b3$$kFZJ
000911423 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b3$$kRWTH
000911423 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000911423 9141_ $$y2022
000911423 920__ $$lyes
000911423 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000911423 980__ $$aconf
000911423 980__ $$aVDB
000911423 980__ $$aI:(DE-Juel1)IEK-9-20110218
000911423 980__ $$aUNRESTRICTED
000911423 981__ $$aI:(DE-Juel1)IET-1-20110218