| Hauptseite > Publikationsdatenbank > Tape-cast Ce-substituted Li 7 La 3 Zr 2 O 12 electrolyte for improving electrochemical performance of solid-state lithium batteries > print |
| 001 | 911424 | ||
| 005 | 20240712112813.0 | ||
| 024 | 7 | _ | |a 10.1039/D2TA06808G |2 doi |
| 024 | 7 | _ | |a 2050-7488 |2 ISSN |
| 024 | 7 | _ | |a 2050-7496 |2 ISSN |
| 024 | 7 | _ | |a 2128/32906 |2 Handle |
| 024 | 7 | _ | |a WOS:000870375800001 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-04707 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Rath, Purna Chandra |0 P:(DE-HGF)0 |b 0 |
| 245 | _ | _ | |a Tape-cast Ce-substituted Li 7 La 3 Zr 2 O 12 electrolyte for improving electrochemical performance of solid-state lithium batteries |
| 260 | _ | _ | |a London [u.a.] |c 2022 |b RSC |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1669890309_25750 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Solid-state lithium-metal batteries (SSLMBs) with a composite solid electrolyte (CSE) have great potential forachieving both high energy density and high safety and are thus promising next-generation energy storagedevices. The current bottlenecks are a high electrode/electrolyte interface resistance and the limited Li+conductivity of the solid electrolyte layer. To reduce the interface resistance, a tape casting method isused to directly deposit a CSE layer (20 mm) onto a model LiFePO4 cathode. The CSE slurry infiltratesthe cathode layer, forming a Li+ conduction network and ensuring intimate contact between the CSEand the cathode. The tape casting parameters, such as the polymer/Li salt ratio, inorganic filler fraction,and casting thickness, for the CSE layer are investigated. To increase Li+ conductivity, Ce substitution isconducted for Li7 La3Zr2−xCexO 12, x ¼ 0–0.15. The effects of Ce content on the specific capacity, ratecapability, and cycling stability of Li//CSE//LiFePO4 cells are systematically studied. Li 7 La3Zr1.9 Ce0.1O 12(i.e., x ¼ 0.1) is found to be the optimal composition; it outperforms Li7 La3Zr2O 12 andLi 6.25Ga0.25 La3Zr2O12 in terms of CSE conductivity and SSLMB charge–discharge performance. |
| 536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Jheng, Yu-Syuan |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Chen, Cheng-Chia |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Tsai, Chih-Long |0 P:(DE-Juel1)156244 |b 3 |
| 700 | 1 | _ | |a Su, Yu-Sheng |0 0000-0002-5989-1317 |b 4 |
| 700 | 1 | _ | |a Yang, Chun-Chen |0 0000-0002-3832-9800 |b 5 |
| 700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 6 |
| 700 | 1 | _ | |a Hsieh, Chien-Te |0 0000-0002-1053-8635 |b 7 |
| 700 | 1 | _ | |a Lee, Tai-Chou |0 0000-0002-1695-1201 |b 8 |
| 700 | 1 | _ | |a Chang, Jeng-Kuei |0 0000-0002-8359-5817 |b 9 |e Corresponding author |
| 773 | _ | _ | |a 10.1039/D2TA06808G |g Vol. 10, no. 42, p. 22512 - 22522 |0 PERI:(DE-600)2702232-8 |n 42 |p 22512 - 22522 |t Journal of materials chemistry / A |v 10 |y 2022 |x 2050-7488 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/911424/files/R2-ESI.docx |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/911424/files/R2-Manuscript-clean.docx |
| 856 | 4 | _ | |y Restricted |u https://juser.fz-juelich.de/record/911424/files/d2ta06808g.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:911424 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)156244 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)156123 |
| 910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-Juel1)156123 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-28 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-28 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2022-11-09 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER CHEM A : 2021 |d 2022-11-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2022-11-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2022-11-09 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b J MATER CHEM A : 2021 |d 2022-11-09 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
| 981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|