001     911424
005     20240712112813.0
024 7 _ |a 10.1039/D2TA06808G
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a 2128/32906
|2 Handle
024 7 _ |a WOS:000870375800001
|2 WOS
037 _ _ |a FZJ-2022-04707
082 _ _ |a 530
100 1 _ |a Rath, Purna Chandra
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Tape-cast Ce-substituted Li 7 La 3 Zr 2 O 12 electrolyte for improving electrochemical performance of solid-state lithium batteries
260 _ _ |a London ˜[u.a.]œ
|c 2022
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1669890309_25750
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solid-state lithium-metal batteries (SSLMBs) with a composite solid electrolyte (CSE) have great potential forachieving both high energy density and high safety and are thus promising next-generation energy storagedevices. The current bottlenecks are a high electrode/electrolyte interface resistance and the limited Li+conductivity of the solid electrolyte layer. To reduce the interface resistance, a tape casting method isused to directly deposit a CSE layer (20 mm) onto a model LiFePO4 cathode. The CSE slurry infiltratesthe cathode layer, forming a Li+ conduction network and ensuring intimate contact between the CSEand the cathode. The tape casting parameters, such as the polymer/Li salt ratio, inorganic filler fraction,and casting thickness, for the CSE layer are investigated. To increase Li+ conductivity, Ce substitution isconducted for Li7 La3Zr2−xCexO 12, x ¼ 0–0.15. The effects of Ce content on the specific capacity, ratecapability, and cycling stability of Li//CSE//LiFePO4 cells are systematically studied. Li 7 La3Zr1.9 Ce0.1O 12(i.e., x ¼ 0.1) is found to be the optimal composition; it outperforms Li7 La3Zr2O 12 andLi 6.25Ga0.25 La3Zr2O12 in terms of CSE conductivity and SSLMB charge–discharge performance.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jheng, Yu-Syuan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Chen, Cheng-Chia
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 3
700 1 _ |a Su, Yu-Sheng
|0 0000-0002-5989-1317
|b 4
700 1 _ |a Yang, Chun-Chen
|0 0000-0002-3832-9800
|b 5
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 6
700 1 _ |a Hsieh, Chien-Te
|0 0000-0002-1053-8635
|b 7
700 1 _ |a Lee, Tai-Chou
|0 0000-0002-1695-1201
|b 8
700 1 _ |a Chang, Jeng-Kuei
|0 0000-0002-8359-5817
|b 9
|e Corresponding author
773 _ _ |a 10.1039/D2TA06808G
|g Vol. 10, no. 42, p. 22512 - 22522
|0 PERI:(DE-600)2702232-8
|n 42
|p 22512 - 22522
|t Journal of materials chemistry / A
|v 10
|y 2022
|x 2050-7488
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/911424/files/R2-ESI.docx
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/911424/files/R2-Manuscript-clean.docx
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/911424/files/d2ta06808g.pdf
909 C O |o oai:juser.fz-juelich.de:911424
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2022
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-09
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2021
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-09
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J MATER CHEM A : 2021
|d 2022-11-09
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21