000911443 001__ 911443
000911443 005__ 20240712112933.0
000911443 0247_ $$2doi$$a10.1002/adts.202200286
000911443 0247_ $$2Handle$$a2128/33806
000911443 0247_ $$2WOS$$aWOS:000831344300001
000911443 037__ $$aFZJ-2022-04715
000911443 041__ $$aEnglish
000911443 082__ $$a050
000911443 1001_ $$0P:(DE-Juel1)173965$$aRonsin, Olivier J. J.$$b0$$eCorresponding author
000911443 245__ $$aPhase‐Field Simulations of the Morphology Formation in Evaporating Crystalline Multicomponent Films
000911443 260__ $$aWeinheim$$bWiley-VCH Verlag$$c2022
000911443 3367_ $$2DRIVER$$aarticle
000911443 3367_ $$2DataCite$$aOutput Types/Journal article
000911443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675059338_23439
000911443 3367_ $$2BibTeX$$aARTICLE
000911443 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911443 3367_ $$00$$2EndNote$$aJournal Article
000911443 520__ $$aIn numerous solution-processed thin films, a complex morphology resultingfrom liquid–liquid phase separation (LLPS) or from polycrystallization arisesduring the drying or subsequent processing steps. The morphology has astrong influence on the performance of the final device but unfortunately, theprocess–structure relationship is often poorly and only qualitativelyunderstood. This is because many different physical mechanisms (miscibility,evaporation, crystallization, diffusion, and advection) are active at potentiallydifferent time scales and because the kinetics plays a crucial role: themorphology develops until it is kinetically quenched far from equilibrium. Inorder to unravel the various possible structure formation pathways, a unifiedtheoretical framework that takes into account all these physical phenomena isproposed. This phase-field simulation tool is based on the Cahn–Hilliardequations for diffusion and the Allen–Cahn equation for crystallization andevaporation, which are coupled to the equations for the dynamics of the fluid.The behavior of the coupled model based on simple test cases is discussedand verified. Furthermore, how this framework allows to investigate themorphology formation in a drying film undergoing evaporation-induced LLPSand crystallization, which is typically a situation encountered, is illustrated, forexample, in organic photovoltaics applications.
000911443 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000911443 536__ $$0G:(GEPRIS)449539983$$aDFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik $$c449539983$$x1
000911443 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911443 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b1
000911443 773__ $$0PERI:(DE-600)2894557-8$$a10.1002/adts.202200286$$gVol. 5, no. 10, p. 2200286 -$$n10$$p2200286 -$$tAdvanced theory and simulations$$v5$$x2513-0390$$y2022
000911443 8564_ $$uhttps://juser.fz-juelich.de/record/911443/files/AM_Phase%20Field%20Simulations%20of%20the%20Morphology%20Formation%20in%20Evaporating%20Crystalline%20Multicomponent%20Films.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000911443 8564_ $$uhttps://juser.fz-juelich.de/record/911443/files/Phase%20Field%20Simulations%20of%20the%20Morphology%20Formation%20in%20Evaporating%20Crystalline%20Multicomponent%20Films.pdf$$yRestricted$$zStatID:(DE-HGF)0599
000911443 8767_ $$d2022-02-15$$eHybrid-OA$$jDEAL
000911443 909CO $$ooai:juser.fz-juelich.de:911443$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000911443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173965$$aForschungszentrum Jülich$$b0$$kFZJ
000911443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b1$$kFZJ
000911443 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000911443 9141_ $$y2022
000911443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-10-08
000911443 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-10-08
000911443 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000911443 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-10-08
000911443 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-10-08$$wger
000911443 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-10-08
000911443 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911443 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-10-08
000911443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-10-08
000911443 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000911443 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911443 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000911443 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000911443 920__ $$lyes
000911443 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000911443 9801_ $$aFullTexts
000911443 980__ $$ajournal
000911443 980__ $$aVDB
000911443 980__ $$aUNRESTRICTED
000911443 980__ $$aI:(DE-Juel1)IEK-11-20140314
000911443 980__ $$aAPC
000911443 981__ $$aI:(DE-Juel1)IET-2-20140314