001     911443
005     20240712112933.0
024 7 _ |a 10.1002/adts.202200286
|2 doi
024 7 _ |a 2128/33806
|2 Handle
024 7 _ |a WOS:000831344300001
|2 WOS
037 _ _ |a FZJ-2022-04715
041 _ _ |a English
082 _ _ |a 050
100 1 _ |a Ronsin, Olivier J. J.
|0 P:(DE-Juel1)173965
|b 0
|e Corresponding author
245 _ _ |a Phase‐Field Simulations of the Morphology Formation in Evaporating Crystalline Multicomponent Films
260 _ _ |a Weinheim
|c 2022
|b Wiley-VCH Verlag
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675059338_23439
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In numerous solution-processed thin films, a complex morphology resultingfrom liquid–liquid phase separation (LLPS) or from polycrystallization arisesduring the drying or subsequent processing steps. The morphology has astrong influence on the performance of the final device but unfortunately, theprocess–structure relationship is often poorly and only qualitativelyunderstood. This is because many different physical mechanisms (miscibility,evaporation, crystallization, diffusion, and advection) are active at potentiallydifferent time scales and because the kinetics plays a crucial role: themorphology develops until it is kinetically quenched far from equilibrium. Inorder to unravel the various possible structure formation pathways, a unifiedtheoretical framework that takes into account all these physical phenomena isproposed. This phase-field simulation tool is based on the Cahn–Hilliardequations for diffusion and the Allen–Cahn equation for crystallization andevaporation, which are coupled to the equations for the dynamics of the fluid.The behavior of the coupled model based on simple test cases is discussedand verified. Furthermore, how this framework allows to investigate themorphology formation in a drying film undergoing evaporation-induced LLPSand crystallization, which is typically a situation encountered, is illustrated, forexample, in organic photovoltaics applications.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|x 0
|f POF IV
536 _ _ |a DFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik
|0 G:(GEPRIS)449539983
|c 449539983
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 1
773 _ _ |a 10.1002/adts.202200286
|g Vol. 5, no. 10, p. 2200286 -
|0 PERI:(DE-600)2894557-8
|n 10
|p 2200286 -
|t Advanced theory and simulations
|v 5
|y 2022
|x 2513-0390
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/911443/files/AM_Phase%20Field%20Simulations%20of%20the%20Morphology%20Formation%20in%20Evaporating%20Crystalline%20Multicomponent%20Films.pdf
856 4 _ |y Restricted
|z StatID:(DE-HGF)0599
|u https://juser.fz-juelich.de/record/911443/files/Phase%20Field%20Simulations%20of%20the%20Morphology%20Formation%20in%20Evaporating%20Crystalline%20Multicomponent%20Films.pdf
909 C O |o oai:juser.fz-juelich.de:911443
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-10-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-10-08
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-10-08
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-10-08
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-10-08
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-10-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-10-08
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21