| Home > Publications database > Phase‐Field Simulations of the Morphology Formation in Evaporating Crystalline Multicomponent Films > print |
| 001 | 911443 | ||
| 005 | 20240712112933.0 | ||
| 024 | 7 | _ | |a 10.1002/adts.202200286 |2 doi |
| 024 | 7 | _ | |a 2128/33806 |2 Handle |
| 024 | 7 | _ | |a WOS:000831344300001 |2 WOS |
| 037 | _ | _ | |a FZJ-2022-04715 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 050 |
| 100 | 1 | _ | |a Ronsin, Olivier J. J. |0 P:(DE-Juel1)173965 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Phase‐Field Simulations of the Morphology Formation in Evaporating Crystalline Multicomponent Films |
| 260 | _ | _ | |a Weinheim |c 2022 |b Wiley-VCH Verlag |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1675059338_23439 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a In numerous solution-processed thin films, a complex morphology resultingfrom liquid–liquid phase separation (LLPS) or from polycrystallization arisesduring the drying or subsequent processing steps. The morphology has astrong influence on the performance of the final device but unfortunately, theprocess–structure relationship is often poorly and only qualitativelyunderstood. This is because many different physical mechanisms (miscibility,evaporation, crystallization, diffusion, and advection) are active at potentiallydifferent time scales and because the kinetics plays a crucial role: themorphology develops until it is kinetically quenched far from equilibrium. Inorder to unravel the various possible structure formation pathways, a unifiedtheoretical framework that takes into account all these physical phenomena isproposed. This phase-field simulation tool is based on the Cahn–Hilliardequations for diffusion and the Allen–Cahn equation for crystallization andevaporation, which are coupled to the equations for the dynamics of the fluid.The behavior of the coupled model based on simple test cases is discussedand verified. Furthermore, how this framework allows to investigate themorphology formation in a drying film undergoing evaporation-induced LLPSand crystallization, which is typically a situation encountered, is illustrated, forexample, in organic photovoltaics applications. |
| 536 | _ | _ | |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121) |0 G:(DE-HGF)POF4-1215 |c POF4-121 |x 0 |f POF IV |
| 536 | _ | _ | |a DFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik |0 G:(GEPRIS)449539983 |c 449539983 |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Harting, Jens |0 P:(DE-Juel1)167472 |b 1 |
| 773 | _ | _ | |a 10.1002/adts.202200286 |g Vol. 5, no. 10, p. 2200286 - |0 PERI:(DE-600)2894557-8 |n 10 |p 2200286 - |t Advanced theory and simulations |v 5 |y 2022 |x 2513-0390 |
| 856 | 4 | _ | |y OpenAccess |z StatID:(DE-HGF)0510 |u https://juser.fz-juelich.de/record/911443/files/AM_Phase%20Field%20Simulations%20of%20the%20Morphology%20Formation%20in%20Evaporating%20Crystalline%20Multicomponent%20Films.pdf |
| 856 | 4 | _ | |y Restricted |z StatID:(DE-HGF)0599 |u https://juser.fz-juelich.de/record/911443/files/Phase%20Field%20Simulations%20of%20the%20Morphology%20Formation%20in%20Evaporating%20Crystalline%20Multicomponent%20Films.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:911443 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)173965 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)167472 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1215 |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-10-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-10-08 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-10-08 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-10-08 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2020-10-08 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-10-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-10-08 |
| 915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
| 915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
| 915 | p | c | |a DFG OA Publikationskosten |2 APC |0 PC:(DE-HGF)0002 |
| 915 | p | c | |a DEAL: Wiley 2019 |2 APC |0 PC:(DE-HGF)0120 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-11-20140314 |k IEK-11 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-11-20140314 |
| 980 | _ | _ | |a APC |
| 981 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|