000911444 001__ 911444
000911444 005__ 20240712112933.0
000911444 0247_ $$2doi$$a10.1021/acsami.2c14319
000911444 0247_ $$2ISSN$$a1944-8244
000911444 0247_ $$2ISSN$$a1944-8252
000911444 0247_ $$2Handle$$a2128/33807
000911444 0247_ $$2pmid$$a36282868
000911444 0247_ $$2WOS$$aWOS:000878357400001
000911444 037__ $$aFZJ-2022-04716
000911444 041__ $$aEnglish
000911444 082__ $$a600
000911444 1001_ $$0P:(DE-Juel1)173965$$aRonsin, Olivier J. J.$$b0$$eCorresponding author
000911444 245__ $$aFormation of Crystalline Bulk Heterojunctions in Organic Solar Cells: Insights from Phase-Field Simulations
000911444 260__ $$aWashington, DC$$bSoc.$$c2022
000911444 3367_ $$2DRIVER$$aarticle
000911444 3367_ $$2DataCite$$aOutput Types/Journal article
000911444 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675059523_23439
000911444 3367_ $$2BibTeX$$aARTICLE
000911444 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911444 3367_ $$00$$2EndNote$$aJournal Article
000911444 520__ $$aThe performance of organic solar cells strongly depends on thebulk-heterojunction (BHJ) morphology of the photoactive layer. This BHJforms during the drying of the wet-deposited solution, because of physicalprocesses such as crystallization and/or liquid-liquid phase separation (LLPS).However, the process-structure relationship remains insufficiently understood.In this work, a recently developed, coupled phase-field−fluid mechanicsframework is used to simulate the BHJ formation upon drying. For the firsttime, this allows to investigate the interplay between all the relevant physicalprocesses (evaporation, crystal nucleation and growth, liquid demixing,composition-dependent kinetic properties), within a single coherent theoreticalframework. Simulations for the model system P3HT-PCBM are presented. Thecomparison with previously reported in situ characterization of the drying structure is very convincing: The morphology formationpathways, crystallization kinetics, and final morphology are in line with experimental results. The final BHJ morphology is a subtlemixture of pure crystalline donor and acceptor phases, pure and mixed amorphous domains, which depends on the processparameters and material properties. The expected benefit of such an approach is to identify physical design rules for ink formulationand processing conditions to optimize the cell’s performance. It could be applied to recent organic material systems in the future.
000911444 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000911444 536__ $$0G:(GEPRIS)449539983$$aDFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik $$c449539983$$x1
000911444 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911444 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b1
000911444 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.2c14319$$gp. acsami.2c14319$$n44$$p49785–49800$$tACS applied materials & interfaces$$v14$$x1944-8244$$y2022
000911444 8564_ $$uhttps://juser.fz-juelich.de/record/911444/files/Ronsin%2C%20O_AM_Formation%20of%20Crystalline%20Bulk%20Heterojunctions%20in%20Organic%20Solar%20Cells_%20Insights%20from%20Phase%20Field%20Simulations.pdf$$yOpenAccess$$zStatID:(DE-HGF)0510
000911444 8564_ $$uhttps://juser.fz-juelich.de/record/911444/files/acsami.2c14319.pdf$$yRestricted
000911444 909CO $$ooai:juser.fz-juelich.de:911444$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000911444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173965$$aForschungszentrum Jülich$$b0$$kFZJ
000911444 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b1$$kFZJ
000911444 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000911444 9141_ $$y2022
000911444 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2019$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911444 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2019$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-30
000911444 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-30
000911444 920__ $$lyes
000911444 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000911444 9801_ $$aFullTexts
000911444 980__ $$ajournal
000911444 980__ $$aVDB
000911444 980__ $$aUNRESTRICTED
000911444 980__ $$aI:(DE-Juel1)IEK-11-20140314
000911444 981__ $$aI:(DE-Juel1)IET-2-20140314