001     911444
005     20240712112933.0
024 7 _ |a 10.1021/acsami.2c14319
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a 2128/33807
|2 Handle
024 7 _ |a 36282868
|2 pmid
024 7 _ |a WOS:000878357400001
|2 WOS
037 _ _ |a FZJ-2022-04716
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Ronsin, Olivier J. J.
|0 P:(DE-Juel1)173965
|b 0
|e Corresponding author
245 _ _ |a Formation of Crystalline Bulk Heterojunctions in Organic Solar Cells: Insights from Phase-Field Simulations
260 _ _ |a Washington, DC
|c 2022
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675059523_23439
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The performance of organic solar cells strongly depends on thebulk-heterojunction (BHJ) morphology of the photoactive layer. This BHJforms during the drying of the wet-deposited solution, because of physicalprocesses such as crystallization and/or liquid-liquid phase separation (LLPS).However, the process-structure relationship remains insufficiently understood.In this work, a recently developed, coupled phase-field−fluid mechanicsframework is used to simulate the BHJ formation upon drying. For the firsttime, this allows to investigate the interplay between all the relevant physicalprocesses (evaporation, crystal nucleation and growth, liquid demixing,composition-dependent kinetic properties), within a single coherent theoreticalframework. Simulations for the model system P3HT-PCBM are presented. Thecomparison with previously reported in situ characterization of the drying structure is very convincing: The morphology formationpathways, crystallization kinetics, and final morphology are in line with experimental results. The final BHJ morphology is a subtlemixture of pure crystalline donor and acceptor phases, pure and mixed amorphous domains, which depends on the processparameters and material properties. The expected benefit of such an approach is to identify physical design rules for ink formulationand processing conditions to optimize the cell’s performance. It could be applied to recent organic material systems in the future.
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|x 0
|f POF IV
536 _ _ |a DFG project 449539983 - Prozess-Struktur Relationen für die lösungsmittelbasierte organische Photovoltaik
|0 G:(GEPRIS)449539983
|c 449539983
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 1
773 _ _ |a 10.1021/acsami.2c14319
|g p. acsami.2c14319
|0 PERI:(DE-600)2467494-1
|n 44
|p 49785–49800
|t ACS applied materials & interfaces
|v 14
|y 2022
|x 1944-8244
856 4 _ |y OpenAccess
|z StatID:(DE-HGF)0510
|u https://juser.fz-juelich.de/record/911444/files/Ronsin%2C%20O_AM_Formation%20of%20Crystalline%20Bulk%20Heterojunctions%20in%20Organic%20Solar%20Cells_%20Insights%20from%20Phase%20Field%20Simulations.pdf
856 4 _ |u https://juser.fz-juelich.de/record/911444/files/acsami.2c14319.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:911444
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21