000911469 001__ 911469
000911469 005__ 20240712112814.0
000911469 0247_ $$2doi$$a10.1002/elsa.202100189
000911469 0247_ $$2Handle$$a2128/34410
000911469 0247_ $$2WOS$$aWOS:001138657200006
000911469 037__ $$aFZJ-2022-04740
000911469 082__ $$a540
000911469 1001_ $$0P:(DE-Juel1)179453$$aSchalenbach, Maximilian$$b0$$eCorresponding author$$ufzj
000911469 245__ $$aIonic transport modeling for liquid electrolytes ‐ Experimental evaluation by concentration gradients and limited currents
000911469 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co KGaA$$c2022
000911469 3367_ $$2DRIVER$$aarticle
000911469 3367_ $$2DataCite$$aOutput Types/Journal article
000911469 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1684220486_30060
000911469 3367_ $$2BibTeX$$aARTICLE
000911469 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000911469 3367_ $$00$$2EndNote$$aJournal Article
000911469 520__ $$aA direct current in an electrochemical cell with a diluted liquid electrolyte leads to the displacement of ions within the solvent, while diffusion works against the resulting concentration differences. This study aims to experimentally evaluate a physicochemical ion transport model (source code provided) that describes current-driven concentration gradients in diluted electrolytes. Hereto, an aqueous 0.1 M CuSO4 electrolyte between metallic copper electrodes serves as an experimental test system. Spatially resolved optical measurements are used to monitor the evolution of the ion concentration gradient in the electrolyte. Moreover, measured limited currents are related to computationally modeled concentration gradients. A constant parameterization of the diffusion coefficient, molar conductivity and ion transport number lead to a slight overestimation of the cathodic ion depletion and cell resistance, whereas a literature data based concentration dependent parameterization matches better to the measured data. The limited current is considered under a computational parameter variation and thereby related to the physicochemical impact of different electrolyte properties on the ion transport. This approach highlights the differences between purely diffusion limited currents and the limited current resulting from the combined electric field and diffusion driven ion motion. A qualitative schematic sketch of the physical mechanisms of the ion movement is presented to illustrate the current driven ion displacement in liquid electrolytes.
000911469 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000911469 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000911469 7001_ $$0P:(DE-Juel1)179451$$aHecker, Burkhard$$b1$$ufzj
000911469 7001_ $$0P:(DE-Juel1)179220$$aSchmid, Bernhard$$b2$$ufzj
000911469 7001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b3$$ufzj
000911469 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4$$ufzj
000911469 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b5$$ufzj
000911469 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b6$$ufzj
000911469 773__ $$0PERI:(DE-600)2984616-X$$a10.1002/elsa.202100189$$n2$$pe2100189$$tElectrochemical science advances$$v3$$x2698-5977$$y2022
000911469 8564_ $$uhttps://juser.fz-juelich.de/record/911469/files/Electrochemical%20Science%20Adv%20-%202022%20-%20Schalenbach%20-%20Ionic%20transport%20modeling%20for%20liquid%20electrolytes%20%E2%80%90%20Experimental.pdf$$yOpenAccess
000911469 8564_ $$uhttps://juser.fz-juelich.de/record/911469/files/JUSER_Ion%20Transport%20and%20Limited%20Currents%20in%20Supporting%20Electrolytes%20and%20....pdf$$yOpenAccess
000911469 8767_ $$d2022-10-18$$eAPC$$jZahlung erfolgt
000911469 909CO $$ooai:juser.fz-juelich.de:911469$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000911469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179453$$aForschungszentrum Jülich$$b0$$kFZJ
000911469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179451$$aForschungszentrum Jülich$$b1$$kFZJ
000911469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179220$$aForschungszentrum Jülich$$b2$$kFZJ
000911469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b3$$kFZJ
000911469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
000911469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b5$$kFZJ
000911469 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b6$$kFZJ
000911469 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b6$$kRWTH
000911469 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000911469 9141_ $$y2022
000911469 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000911469 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000911469 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000911469 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
000911469 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000911469 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000911469 920__ $$lyes
000911469 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000911469 9801_ $$aAPC
000911469 9801_ $$aFullTexts
000911469 980__ $$ajournal
000911469 980__ $$aVDB
000911469 980__ $$aUNRESTRICTED
000911469 980__ $$aI:(DE-Juel1)IEK-9-20110218
000911469 980__ $$aAPC
000911469 981__ $$aI:(DE-Juel1)IET-1-20110218