001     911476
005     20240712112814.0
024 7 _ |a 10.1016/j.micromeso.2022.112156
|2 doi
024 7 _ |a 1387-1811
|2 ISSN
024 7 _ |a 1873-3093
|2 ISSN
024 7 _ |a 2128/32646
|2 Handle
024 7 _ |a WOS:000862789800005
|2 WOS
037 _ _ |a FZJ-2022-04747
082 _ _ |a 530
100 1 _ |a Kretzschmar, Ansgar
|0 P:(DE-Juel1)171715
|b 0
|e Corresponding author
245 _ _ |a Application of a tailorable carbon molecular sieve to evaluate concepts for the molecular dimensions of gases
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668670684_5418
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Molecular sieves have attracted considerable interest for gas separation applications due to their ability todiscriminate substances by their molecule’s size. To predict if a molecular sieve is suitable for a specific separationproblem an accurate measure of the molecular sizes is called for. Furthermore, a high precision in estimationsfor molecular dimensions is needed for the characterization of materials using molecular probes. In thiswork, different popular concepts to estimate the size of a gas molecule, specifically Breck’s kinetic diameter, thecritical diameter and molecular dimensions by Webster (MIN-1) are discussed. These concepts are evaluatedusing a tailorable carbon molecular sieve. It is concluded, that the widely used kinetic diameter has somedrawbacks to determine the accessibility of pores. Finally, recommendations for alternatives from existingliterature are presented.
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 0
536 _ _ |a EXC 2186:  The Fuel Science Center – Adaptive Conversion Systems for Renewable Energy and Carbon Sources (390919832)
|0 G:(GEPRIS)390919832
|c 390919832
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Selmert, Victor
|0 P:(DE-Juel1)178824
|b 1
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 2
|u fzj
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 3
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
|u fzj
773 _ _ |a 10.1016/j.micromeso.2022.112156
|g Vol. 343, p. 112156 -
|0 PERI:(DE-600)2012505-7
|p 112156 -
|t Microporous and mesoporous materials
|v 343
|y 2022
|x 1387-1811
856 4 _ |u https://juser.fz-juelich.de/record/911476/files/Kretzschmar%2C%20Selmert%20et%20al%202022%20-%20Application%20of%20a%20tailorable%20carbon.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:911476
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171715
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)171715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178824
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)178824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MICROPOR MESOPOR MAT : 2021
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2022-11-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MICROPOR MESOPOR MAT : 2021
|d 2022-11-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21